Course detail
Experimental Methods
FSI-IEM Acad. year: 2018/2019 Winter semester
The course deals with experimental methods in environmental engineering, hydrodynamics and power engineering. The course covers the principles of experimental methods, properties of sensors, computer measurements and processing.
Language of instruction
Czech
Number of ECTS credits
5
Supervisor
Department
Learning outcomes of the course unit
Students will acquire theoretical knowledge and learn to work with experimental equipment and computer measuring systems.
Prerequisites
Knowledge of physical laws from thermodynamics, heat transfer, mechanics of fluids and electrotechnical engineering.
Planned learning activities and teaching methods
The course is taught through lectures explaining the basic principles and theory of the discipline. Teaching is suplemented by practical laboratory work.
Assesment methods and criteria linked to learning outcomes
Graded course-unit requirements: The evaluation consists of tests results, theoretical knowledge and of results from laboratories.
Aims
Students learn to work with experimental and measuring devices for environmental engineering, hydrodynamics and power engineering.
Specification of controlled education, way of implementation and compensation for absences
The work in laboratories is checked systematically and three tests in a semester are written.
The study programmes with the given course
Programme M2I-P: Mechanical Engineering, Master's
branch M-ENI: Power Engineering, compulsory
Programme M2I-P: Mechanical Engineering, Master's
branch M-FLI: Fluid Engineering, compulsory
Programme M2I-P: Mechanical Engineering, Master's
branch M-TEP: Environmental Engineering, compulsory
Type of course unit
Lecture
26 hours, optionally
Teacher / Lecturer
Syllabus
Terminology, methods and norms for measuring.
Processing of measurements. Measurement errors.
Temperature measurement. Pressure measurement.
Measurement of fluid velocities, flow rates, heat-transfer rates.
Noise measurements. Measurement of vibrations and revolutions.
Measurement of air pollutions, photometric quantities, radiation.
Humidity measurement. Measurement of thermal state in indoor air.
Visualization and optical measuring methods.
Measuring of electrical quantities.
Properties of sensors and measuring equipments.
Computer measuring and control systems.
Autonomous devices. Mobile and industrial systems.
Software for measuring and control.