Course detail
Space Flight Mechanics
FSI-OZ0 Acad. year: 2018/2019 Winter semester
Historical introduction to astronautics. The problem of space flight and its technical solutions. Fundamentals of space flight. Passive motion of cosmic bodies. Artificial satellites. Active motion of space vehicles. Dynamics of space vehicles. Flight performance of rockets. Orbital maneuvers. Interplanetary trajectories. Re-entry problems. Reusable aerospace vehicles. Reusable space transportation system.
Language of instruction
Czech
Number of ECTS credits
4
Supervisor
Department
Learning outcomes of the course unit
Learning basic principles of space flight mechanics. Acquiring knowledge of aerospace technique (multi-reusable space transportation system, space shuttle).
Prerequisites
The basics of mathematics – differential and integral calculus, common differential equations. The basics of common mechanics – force effect on a body, kinematics, dynamics.
Planned learning activities and teaching methods
The course is taught through lectures explaining the basic principles and theory of the discipline.
Assesment methods and criteria linked to learning outcomes
Obtaining the classified credit of this compulsory subject: attendance at lectures (about 75%) and the final test. Classification fulfils FME BUT rules.
Aims
The goal is to familiarize students with the branch of the area of aeronautical and cosmic means of transport that develops in a progressive way and with main problems of space flights.
Specification of controlled education, way of implementation and compensation for absences
Lectures are optional. Compensation is done individually by self-study of recommended literature.
The study programmes with the given course
Programme M2I-P: Mechanical Engineering, Master's
branch M-LPR: Aeronautical Traffic, compulsory
Programme M2I-P: Mechanical Engineering, Master's
branch M-STL: Aircraft Design, compulsory
Type of course unit
Lecture
26 hours, optionally
Teacher / Lecturer
Syllabus
1. Historical introduction to astronautics.
2. Basic problems of space flight and its technical solutions.
3. Definition and clasification of space vehicles. Coordinate systems in mechanics of space flight.
4. Passive motion in a central gravitational field. Kepler's laws.
5. Position and velocity of cosmic bodies in orbit. Integral energy.
6. Description orbit. Orbit elements.
7. Active motion of space vehicles. Dynamics of rocket motion.
8. Flight performance of space vehucles. Specific impulse.
9. Launch of artificial Earth satellite. Characteristic of space velocities.
10. Maneuvering in orbit. Active-controlled movement of space vehicles.
11.Interplanetary space flights.
12. Re-entry problems.
13. Multi-reusable space transportation system.