Course detail

Real Time Control and Simulation

FSI-RPO Acad. year: 2018/2019 Summer semester

Students will learn about advanced techniques of real-time simulations, identification, advanced control systems and state/parameter estimation. Theoretical findings will be applied on team project dealing with complex control design for real educational model.

Language of instruction

Czech

Number of ECTS credits

4

Learning outcomes of the course unit

Students will gain knowledge about
• rapid control prototyping and HIL
• system identification
• state space control
• Kalman filter
• nonlinear control
• complex team project.

Prerequisites

Knowledge from modules: RMW, RDO, RKD.

Planned learning activities and teaching methods

Lectures, labs.

Assesment methods and criteria linked to learning outcomes

Module is graded according to:
• active participation on exercises/labs
• project
• tests.

Aims

Students will learn about advanced techniques of real-time simulations and related SW and HW. Theoretical findings will be demonstrated on process of identification and design of advanced control system for real laboratory model.

Specification of controlled education, way of implementation and compensation for absences

Attendance at practical training is obligatory. Evaluation are made on exercises based on evaluation criteria.

The study programmes with the given course

Programme M2A-P: Applied Sciences in Engineering, Master's
branch M-MET: Mechatronics, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

Dynamic behaviour and properties of drive systems.
Structure of drive systems.
Interactive drive systems.
Basic drive systems: machines, gearbox – industry machines.
Basic drive systems: machines, gearbox – industry machines.
Operating states of drive systems and their stability.
Operating states of drive systems and their stability.
Computational modelling of drive systems.
Computational modelling of drive systems.
Stability of drive systems and defects.
Experimental monitoring of drive systems dynamics properties.