Course detail

Elektrotechnology

FSI-WET Acad. year: 2018/2019 Summer semester

A survey of materials important for electrical engineering. Their properties and field of application. Metals, semiconductors, insulators, magnetic materials.

Language of instruction

Czech

Number of ECTS credits

4

Learning outcomes of the course unit

The survey of materials in electrical engineering.

Prerequisites

Fundamental knowledge of the physics and matematics on the level of Secondary school.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Teaching is suplemented by practical laboratory work.

Assesment methods and criteria linked to learning outcomes

Course-unit credit is awarded on the following conditions: active participation in lessons – 40 credits.
The exam has a written part only – 60 credits.

Aims

Classification of important materials and the state – of – art in their research and development.

Specification of controlled education, way of implementation and compensation for absences

Lecture – optional
Labs and studios – participation required

The study programmes with the given course

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

Materials for electrical engineering
1. Materials for electrical engineering; modification of their properties by the changes of composition and structure. Band diagram of solid bodies and its influence on conductivity. Electronic, ionic and electroforetic conductivity.
2. Metallic materials. Electric conductivity of metals. Contact potential difference. Corrosion of metals. Materials as conductors, resistor materials, materials for contacts. Solders. Carbon for electrical engineering. Superconduction and superconductors.
3. Semiconductors. Intrinsic and extrinsic semiconductors. Thermodynamic equilibrium in semiconductors. Electric conductivity, the influence of temperature and intensity of electric field. Hall effect, magnetoresistance, thermoelectricity, Peltier effect. Classification of semiconductors with respect to structure and composition.
4. Dielectrics and insulators. Electric conductivity, influence of temperature and intensity of electric field. Mechanisms of polarization, polarization in a.c. and/or d.c. fields. Dielectric losses, breakdown if insulator. Electrostriction, piezoelectricity, pyroelectricity. Gaseous, liquid and solid insulators.
5. Magnetic materials. Ferromagnetics, ferrimagnetics, orbital and spin magnetic momentums, domain structure. The curve of primary magnetization, hysteresis loop. Magnetically soft and hard materials. Materials for recording of signals. Amorph and glassy metals.