Course detail

Finite Element Method - ANSYS Workbench

FSI-ZAW Acad. year: 2018/2019 Summer semester

Solution of real engineering problems using FEM. Calculation of linear and non-linear analysis of beam structures, stress-strain analysis of machine parts, modal analysis, heat transfer. Emphasis is placed also on the analysis and interpretation of results, which is an inseparable part of FEM analyses.

Language of instruction

Czech

Number of ECTS credits

5

Learning outcomes of the course unit

Students will significantly extend their knowledge in the field of FEM. They will learn to work in ANSYS Workbench environment. Due to analysis of real components and structures, they will learn self-reliance in the FEM calculations.

Prerequisites

Knowledge in area of strength of materials, CAD systems, FEM fundamentals and ANSYS Classic.

Planned learning activities and teaching methods

The course is taught through exercises, which are focused on solution of practical tasks.

Assesment methods and criteria linked to learning outcomes

Graded course-unit credit is awarded on the following conditions: active participation in the seminars, passing the final test (5th week) based on knowledge from lectures.

Aims

Aim of the course is to extend students’ knowledge in area of finite element methods (FEM), while practicing ANSYS Workbench software. Emphasis is placed on acquiring comprehensive knowledge about FEM analyses through practical exercises focused on: computational model creation; correct solver settings, solution and interpretation of the results.

Specification of controlled education, way of implementation and compensation for absences

Attendance at practicals is obligatory and checked by the lecturer. One excused absence can be tolerated without compensation. In case of longer absence, compensation of missed lessons depends on the instructions of course supervisor.

The study programmes with the given course

Type of course unit

 

Computer-assisted exercise

30 hours, compulsory

Teacher / Lecturer

Syllabus

1. Strain-stress 3D analysis (bracket, spanner, spring)
2. Strain-stress 1D and 2D analysis (truss, pressure vessel, plain stress, plain strain, axisymmetry)
3. Strain-stress analysis of assembly, contact analysis, preloaded bolted joint (weldment, snap, flange)
4. Modal analysis, prestressed modal analysis (bell, propeller, blade wheel)
5. Linear buckling (truss)
6. Non-linear material models (valve, seal)
7. Steady-state and unsteady heat transfer (window system, printed circuit board, piston)
6. Coupled strain-stress thermal analysis (cover, pan)