Course detail
Introduction to Automatic Control
FSI-RRE Acad. year: 2019/2020 Summer semester
Control theory of linear systems, mathematical models of dynamic systems, state space equations, transfer functions, feedback systems, stability of feedback systems,basic types of controllers P, I, PI, PD, PID, design algorithms of controllers, state feedback control, state feedback control with an observer, discrete linear systems, Z-transform, design of digital controllers, discrete state control
Language of instruction
Czech
Number of ECTS credits
5
Supervisor
Learning outcomes of the course unit
Students will be able to solve the performance of dynamic systems in the time and in the frequency area They will learn how to design feedback controllers and how to apply it the acquired knowledge for with respect to position servodrives of NC machines and robots.
Prerequisites
Calculations with complex numbers, linear differential equations, Laplace transform, matrix calculus
Planned learning activities and teaching methods
The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.
Assesment methods and criteria linked to learning outcomes
The course-unit credit awarded on condition of having worked out given problems. Individual solution is expected applying program MATLAB/SIMULINK. Eexamination takes form of a written test
Aims
The aim of the course is to teach students to understand the relation between a real dynamic system, its mathematical model and the goal of a feedback control of this system.
Specification of controlled education, way of implementation and compensation for absences
Attendance at practical training is obligatory.
The study programmes with the given course
Programme B3A-P: Applied Sciences in Engineering, Bachelor's
branch B-MET: Mechatronics, compulsory
Type of course unit
Lecture
26 hours, optionally
Teacher / Lecturer
Syllabus
1.Introduction, dynamic systems, mathematical models
2. State space equations of dynamic systems
3. Transfer functions, frequency response, time response
4. Block diagrams of control systems
5. Feedback systems, stability
6. Design of controllers, types of controllers
7. State feedback control
8. State feedback control with an observer
9. Digital control systems
10. Discrete control theory, Z-transform
11. Design methods of digital controllers
12. Discrete state control
13. Dead-beat control
Exercise
26 hours, compulsory
Teacher / Lecturer
Syllabus
Laboratory exercises with MATLAB
1. Introduction to MATLAB and SIMULINK
2. Analysis of dynamic systems, mechanic and electromechanical systems
3. State equations, solution of state equations, SIMULINK models
4. Derive of transfer functions and frequency responses
5. Types of transfer functions, time response
6. Miniproject: feed drive: block diagram, system analysis
7. Miniproject: design of speed- and position controllers
8. Miniproject: simulation of dynamic behaviour, interpolation in the plane
9. Control of systems with elastic coupling, state controller
10. Design of a discrete PID controller
11. Design of a state controller with an observer
12. Design of a state controller "dead-beat"
13. Structures of control systems, hardware, software