Course detail
Hydromechanics
FSI-5HY Acad. year: 2020/2021 Summer semester
The course presents the basic theory, properties and principal equations of hydrostatics and hydrodynamics as a starting point for analysis of both elementary and advanced hydraulic machines, mechanisms, hydraulic transporting systems, ducts, waterworks, etc.
Language of instruction
Czech
Number of ECTS credits
5
Supervisor
Department
Learning outcomes of the course unit
Knowledge of principals, terms, laws. Capability of solving of simple hydrostatic and hydrodynamic problems of ideal and viscous fluid. Knowledge of basics of fluid machines.
Prerequisites
Mathematics and physics on the level of the courses passed. Basic knowledge of differential and integral calculus.
Planned learning activities and teaching methods
The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.
Assesment methods and criteria linked to learning outcomes
Course-unit credit requirements,
presence on the excercises.Student have to obtain classification not les than E on written tasks. The date of written tasks have to be specified at the begin of semester. Attending of all laboratory excercises. Writing of treatise about accomplished measurings duering laboratory excercises.
Examination.
The goal of examination is to check the students knowledge of laws used in hydromechanics and their application in practise.
Exam has three steps
1. step: test – checks the basic theoretical knowledge from hydromechanics.
2. step: examples – checks the ability to solve some concrete examples from hydrostatics and hydrodynamics.
3. step: oral exam – this part is not compulsory. It is used for the classification finishing.
Aims
The course deals with the basic theory and methods of the modern Hydromechanics as a rudiment of all the technicals.
Specification of controlled education, way of implementation and compensation for absences
Seminars and written tasks on the tutorials.
Presence on the laboratory tutorials.
The study programmes with the given course
Programme B3S-P: Engineering, Bachelor's
branch B-KSB: Quality, Reliability and Safety, compulsory
Programme B3A-P: Applied Sciences in Engineering, Bachelor's
branch B-MET: Mechatronics, compulsory-optional
Programme B3A-P: Applied Sciences in Engineering, Bachelor's
branch B-MET: Mechatronics, elective
Programme B3S-P: Engineering, Bachelor's
branch B-STI: Fundamentals of Mechanical Engineering, compulsory
Programme B3S-P: Engineering, Bachelor's
branch B-VSY: Production Technology, compulsory
Type of course unit
Lecture
39 hours, optionally
Teacher / Lecturer
Syllabus
1.Introduction, Basic Terms and Units, characteristics of fluids.
2.Euler’s Equation of Hydrodystatic, Pascal’s Law, Static Equilibrium of Fluid in Relative
Space.
3.Hydrostatic force on surface. Buoyancy, Flotation and Stability.
4.Hydrodynamic, Introduction, Basic terms, Methods of Flow Description. Continuity Equation,
Euler’s Equation of Hydrodynamic, Bernoulli’s Equation, Momentum Equation.
5.Navier-Stokes‘ Equation, Turbulent flow, Reynold’s Equation.
6.One dimensional fluid flow in pipes. Energy Losses in Pipes. Outflow and Draining
of containers.
7.Open Channel Flow, Sharp-Crested Weirs. Outflow Through Long Pipe, Waterhammer.
8.One Dimensional Flow in Rotating Channel. Basic Energy Equation. Different Pumps
and their Description. Centrifugal Pumps, Energy, Power, Efficiency. Operating Point
of Centrifugal Pumps. Co-operation of Centrifugal Pumps.
9.Turbine, Basic types, Energy, Power, Efficiency.
10.Impulse Turbines and their Design.
11.Laminar Flow.
12.Laboratory and In Situ Measurements of Basic Parametrers.
13.Theory of Similarity, Criteria.
Exercise
18 hours, compulsory
Teacher / Lecturer
Syllabus
The previous lecture-related computational tasks
Computer-assisted exercise
8 hours, compulsory
Syllabus
Experimental measuring in the laboratory