Course detail

Environmental Engineering

FSI-ITP Acad. year: 2020/2021 Winter semester

On average, people in developed countries spend more than 90% of their time indoors (buildings, vehicles, etc.). The course is focused on environmental technologies, i.e. technologies for creating healthy and comfortable indoor environments. These issues include thermal comfort, indoor air quality, ventilation, heating, air-conditioning, energy conservation, and basics of engineering acoustics.

Language of instruction

Czech

Number of ECTS credits

6

Department

Learning outcomes of the course unit

Students get familiar with the technologies for creating healthy and comfortable indoor environments. Students also learn basic design and computational procedures in various areas of indoor environmental engineering.

Prerequisites

Practical knowledge of mathematics, physics, thermodynamics, heat transfer and fluid mechanics.

Planned learning activities and teaching methods

The course is taught through lectures and seminars. Lectures are an explanation of basic principles and theory. Seminars (tutorials) are focused on the practical mastery of the subject matter covered in the lectures and include basic design procedures and calculations in indoor environmental engineering.

Assesment methods and criteria linked to learning outcomes

The written exam consists of theoretical and practical part. The theoretical part is a multiple choice test. The practical part includes solving one task. The theoretical and practical parts have equal weights for exam grading.

Aims

The course addresses technologies for creating healthy and comfortable indoor environments with a special focus on minimizing energy consumption. Students get familiar with basic design and computational procedures in various areas of indoor environmental engineering.

Specification of controlled education, way of implementation and compensation for absences

Attendance at seminars is obligatory. Condition for granting the credit is proper completion of exercises. In justified cases, the absence can be compensated by elaboration of individual tasks in the area of solved problems (tasks are assigned by the teacher).

The study programmes with the given course

Programme N-ETI-P: Power and Thermo-fluid Engineering, Master's
specialization ENI: Power Engineering, compulsory

Programme N-ETI-P: Power and Thermo-fluid Engineering, Master's
specialization FLI: Fluid Engineering, compulsory

Programme N-ETI-P: Power and Thermo-fluid Engineering, Master's
specialization TEP: Environmental Engineering, compulsory

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Syllabus

1. Introduction to indoor environmental engineering (outdoor and indoor environment, human thermal comfort).
2. Thermal environment (operative temperature, PMV, PPD, DR, WBGT).
3. Indoor air quality (types of pollutants, health protection, and ways of providing required indoor air quality).
4. Building ventilation (natural ventilation, mechanical ventilation, air cleaning).
5. Ventilation technology (air transport and distribution, components of ventilation systems).
6. Energy demand of ventilation, waste heat recovery.
7. Air-conditioning systems (classification, components).
8. Sizing and operation of air-conditioning systems.
9. Space heating in buildings, classification of heating systems.
10. Heat sources and components of space heating systems.
11. Energy performance of buildings and its evaluation, integration of renewable energy sources.
12. Noise and its influence on humans, basics of engineering acoustics, health protection in noisy environments.
13. New trends in indoor environmental engineering.

Exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

1. Instruments and techniques for evaluation of thermal environment.
2. Human thermal comfort, thermal comfort diagrams.
3. Indoor air quality, calculation of ventilation rates.
4. Natural ventilation (air flow through ventilation openings and ventilation shafts).
5. Mechanical ventilation, air supply, air jets.
6. Ventilation heat recovery, air recycling.
7. Moist air calculations (heating, cooling, mixing, humidification, dehumidification).
8. Summer operation of an all-air air-conditioning system.
9. Winter operation of an all-air air-conditioning system.
10. Calculation of design heat load.
11. Sizing of space heating systems.
12. Evaluation of energy performance of buildings.
13. Noise and engineering acoustics, basic quantities and calculations.