Course detail
Environmental Engineering
FSI-ITP Acad. year: 2023/2024 Winter semester
On average, people in developed countries spend more than 90% of their time indoors (buildings, vehicles, etc.). The course is focused on environmental technologies, i.e. technologies for creating healthy and comfortable indoor environments. These issues include thermal comfort, indoor air quality, ventilation, heating, air-conditioning, energy conservation, and basics of engineering acoustics.
Language of instruction
Czech
Number of ECTS credits
6
Supervisor
Department
Entry knowledge
Practical knowledge of mathematics, physics, thermodynamics, heat transfer and fluid mechanics.
Rules for evaluation and completion of the course
The written exam consists of theoretical and practical part. The theoretical part is a multiple choice test. The practical part includes solving one task. The theoretical and practical parts have equal weights for exam grading.
Attendance at seminars is obligatory. Condition for granting the credit is proper completion of exercises. In justified cases, the absence can be compensated by elaboration of individual tasks in the area of solved problems (tasks are assigned by the teacher).
Aims
The course addresses technologies for creating healthy and comfortable indoor environments with a special focus on minimizing energy consumption. Students get familiar with basic design and computational procedures in various areas of indoor environmental engineering.
Students get familiar with the technologies for creating healthy and comfortable indoor environments. Students also learn basic design and computational procedures in various areas of indoor environmental engineering.
The study programmes with the given course
Programme N-ETI-P: Power and Thermo-fluid Engineering, Master's
specialization ENI: Power Engineering, compulsory
Programme N-ETI-P: Power and Thermo-fluid Engineering, Master's
specialization FLI: Fluid Engineering, compulsory
Programme N-ETI-P: Power and Thermo-fluid Engineering, Master's
specialization TEP: Environmental Engineering, compulsory
Type of course unit
Lecture
39 hours, optionally
Teacher / Lecturer
Syllabus
1. Introduction to indoor environmental engineering (outdoor and indoor environment, human thermal comfort).
2. Thermal environment (operative temperature, PMV, PPD, DR, WBGT).
3. Indoor air quality (types of pollutants, health protection, and ways of providing required indoor air quality).
4. Building ventilation (natural ventilation, mechanical ventilation, air cleaning).
5. Ventilation technology (air transport and distribution, components of ventilation systems).
6. Energy demand of ventilation, waste heat recovery.
7. Air-conditioning systems (classification, components).
8. Sizing and operation of air-conditioning systems.
9. Space heating in buildings, classification of heating systems.
10. Heat sources and components of space heating systems.
11. Energy performance of buildings and its evaluation, integration of renewable energy sources.
12. Noise and its influence on humans, basics of engineering acoustics, health protection in noisy environments.
13. New trends in indoor environmental engineering.
Exercise
26 hours, compulsory
Teacher / Lecturer
Syllabus
1. Instruments and techniques for evaluation of thermal environment.
2. Human thermal comfort, thermal comfort diagrams.
3. Indoor air quality, calculation of ventilation rates.
4. Natural ventilation (air flow through ventilation openings and ventilation shafts).
5. Mechanical ventilation, air supply, air jets.
6. Ventilation heat recovery, air recycling.
7. Moist air calculations (heating, cooling, mixing, humidification, dehumidification).
8. Summer operation of an all-air air-conditioning system.
9. Winter operation of an all-air air-conditioning system.
10. Calculation of design heat load.
11. Sizing of space heating systems.
12. Evaluation of energy performance of buildings.
13. Noise and engineering acoustics, basic quantities and calculations.