Course detail

Designing of Power Centrals

FSI-LPR Acad. year: 2023/2024 Winter semester

The course continues the theoretical basics of the field obtained in the courses Energy Sources and Transformation, Boilers and Heat Exchangers and Thermal Turbines I. It focuses on planning and designing of power units, heat distribution (cooling) system and energy consumption. It includes optimization calculations of thermal diagrams and partial components of power plant and CHP plant with focus on economic aspects.

Language of instruction

Czech

Number of ECTS credits

6

Department

Entry knowledge

Knowledge of Boilers and Heat Exchangers, Energy Sources and Transformation and Thermal Turbines I

Rules for evaluation and completion of the course

Credit requirements: active participation in seminars, submission of given project according to the set deadline.

Exam requirements: written part in the form of questions and numerical problems, oral part in the form of discussion on given topic


The presence on lectures is recommended and will be delivered according to the schedule.

Calculation classes: submission of all calculation assignments

Aims

The main aim of this course is to acquaint the students with the problems of designing power units, its important hubs and possibilities of optimization.


The course enables graduates to process project documentation in power engineering including optimization thermal calculations.

The study programmes with the given course

Programme N-ETI-P: Power and Thermo-fluid Engineering, Master's
specialization ENI: Power Engineering, compulsory

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Syllabus

1. Introduction to power engineering design, project progress
2. Electrical power engineering, power generation balance, centralised / decentralised generation, Smart Grids.
3. – 4. Thermodynamic cycle of steam power plants.
5. Construction planning, engine room dispositions, boiler rooms, auxiliary equipment, project documentation.
6. Heat and cold supply, district heating and its indicators.
7. Heat and power demand determination, source sizing
8. Diagrams of energy centres with steam turbine.
9. Diagrams of energy centres with gas turbine, gas-steam cycle power plant, cogeneration units with combustion engines.
10. District heating grids.
11. Conditions of sustainability of district heating systems and possibilities of its ecologisation.
12. Fundamental economic concepts, specifics of energetics industry.
13. Tools for economic evaluation of the project, forms of financial subsidy.

Computer-assisted exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

1. Introduction – installation of OpenModelica, graphical editor, declarative programming, syntax
2. Modelling fundamentals – data types, SI units, component interfaces, conservation laws fundamentals
3. Ordinary differential equations – use, meaning, numerical solution, inclusion of events
4. Ordinary differential equations – non-stationary flow of incompressible media (branched pipe system),
5. Partial differential equations – non-stationary heat transfer through solid wall, thermodynamic property of the media,
6. Partial differential equations – advection, one-dimensional simulation of heat exchanger,
7. Steam power plant diagrams – turbine blocks, pumps,
8. Steam power plant diagrams – boilers, condensers, feed chambers, chillers
9. Steam power plant diagrams – efficiency, regenerators, steam extraction points, carnotization.
10. Steam power plant diagrams – generators, motors, internal power consumption,
11. – 12. Machine learning – optimization of model parameters, system identification
13. Grading