Course detail

Bio-inspired Computing

FSI-VBC Acad. year: 2023/2024 Winter semester

The course introduces basic and advanced methods of so called biology inspired computing. Focus is on practical implementation of this special class of artificial intelligence algorithms. Usability of the methods is demonstrated with mathematical and engineering problems.

Language of instruction

Czech

Number of ECTS credits

4

Entry knowledge

Statistics and Optimization Methods I.

Rules for evaluation and completion of the course

Requirements for credit: Students will be divided into teams. They must submit 4 functioning software projects for each team. Each team member must be able to present and understand the projects. Concrete specification will be on the laboratory exercise. Consultations are provided and project progress is checked continuously. Individual projects are in completion. Maximum points form exercises is 100, credit limit is 60.
Attendance at seminars is controlled. An absence can be compensated for via solving additional problems.

Aims

Goal of the course is to introduce students to modern tools of biology inspired computing and options and appropriate usage for solving engineering tasks.
Knowledge: Students will know basic principles and algorithms of presented methods usable in continuous and combinatorial optimization and their options, restrictions and potential for implementation.
Skills: Ability to use these methods to solve practical engineering problems where methods of mathematical optimization may not provide acceptable results.

The study programmes with the given course

Programme N-AIŘ-P: Applied Computer Science and Control, Master's, compulsory

Type of course unit

 

Lecture

13 hours, optionally

Teacher / Lecturer

Syllabus

B1: Biology inspired computation – introduction. History and division of evolutionary computing techniques (ECT). Standard genetic algorithms (SGA). Holland's schema theorem. Building Block Hypothesis.
B2: Advanced GA. Problem coding methods. Combinatorial optimization using GA. 4. Grammar Evolution (GE). Genetic Programming (GP). Symbolic regression tasks. Cartesial Genetic Programming (CGA). Evolutionary design of combinational logic circuits.
B3: Evolution Strategy (ES). Differential Evolution (DE). Representation. Basic models. Binary string searching algorithm HC12. Nelder-Mead algorithm. Algorithms using patterns. Bayesian optimization algorithms.
B4: Swarm algorithms I. (Ant Colony strategy, Bee Colony Optimization). Swarm algorithms II. (Particle Swarm Optimization, Firefly algorithm, SOMA).
B5: Cellular automata I – theory basics. Cellular automata II – practical applications.
B6: Summary – colloquium.

Computer-assisted exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

Teaching will be divided into 4 blocks reflecting real usage of biology inspired computation. Students will work in groups and compare in competition the obtained results.
A. Implementation of GA and solution of concrete optimization task*
B. Implementation of chosen meta-heuristics and solution of concrete optimization task *
C. Implementation of CGA for evolutionary design of hardware
D. Implementation of Cellular automata
*Tasks of combinatorial, integer and mixed optimization (TSP, QAP, controller design, symbolic regression, global optimization of multi-modal functions, etc.)