Course detail
Special Technology of Machining
FSI-HO1 Acad. year: 2024/2025 Winter semester
The content of the course is mainly focused on automation and optimization of technological processes and applies knowledge from the scientific disciplines of physics and mathematics in the implementation, improvement and use of production processes. Introduces students to the theory of production processes, the theory of dimensional circuits with a focus on assembly of machinery, the application of linear algebra to optimize production processes, the analysis of statistical phenomena and probabilities in cutting theory, basic knowledge in creating programs for CNC machines and applications CAD/CAM in TPV, with environmental aspects of engineering production, cutting materials, HSC machining and the theory of energy cutting problems. Furthermore, the content of the course is focused on the methods of industrial engineering in the field of theory and analysis of operations as a necessary prerequisite for mastering technical and economic problems of all types of production.
Language of instruction
Czech
Number of ECTS credits
6
Supervisor
Department
Entry knowledge
The fundamentals of the metal cutting theory, probability theory, differential and integral calculus, determinants, dynamic of the mass point, mechanical work and energy, molecular physics and thermodynamics
Rules for evaluation and completion of the course
Credit requirements include an active participation in all exercises, completing all tasks in the laboratory exercises, and delivery of all required written work. In well-founded cases the teacher can set further conditions as a compensation. The examination tests the knowledge and, in particular, the ability to apply the knowledge independently in solving assigned tasks. The examination consists of a written (test or written exam) and oral part. If the student fails to apply the knowledge in practice, the examination will be graded as unsatisfactory.
Students work is systematically controlled in a form of short written tests, individual compensatory assignments and result check.
Aims
The aim of the course is to familiarise students with automation of a short-run and single-part production focusing on an application of numeric cntrol machine tools including technical production planning.
The students will obtain theoretical fundamentals of a machining technology with the use of numeric control machine tools, they will learn basic methods of programming of these tools, and will be acquainted with economic aspects of technological disciplines.
Study aids
Theses from the lectures. Script Special machining technology.
The study programmes with the given course
Programme C-AKR-P: , Lifelong learning
specialization CZS: , elective
Programme N-STG-P: Manufacturing Technology, Master's
specialization MTS: Modern Technologies of Lighting Systems, compulsory
Programme N-STG-P: Manufacturing Technology, Master's
specialization STG: Manufacturing Technology, compulsory
Programme N-STG-P: Manufacturing Technology, Master's
specialization STM: Manufacturing Technology and Management in Industry, compulsory
Type of course unit
Lecture
39 hours, optionally
Teacher / Lecturer
Syllabus
High-precision machining, calculation or dimension inspection.
Application of new and advanced progressive technologies.
Machining of heavy-duty, modern or prospective technical materials.
Basic concepts of linear programming, Simplex method.
LP application for selection of cutting conditions.
Selection of cutting conditions using conventional optimization methods.
Automation of the manufacturing process in small-scale production, basics of CNC technology.
HSC, HFM, HPM technology.
Machining shape-size or dimensionally extreme components.
Production of gears.
Application of modern technologies, processing of measured data and their possible use.
Micromachining.
Manufacturing Technologies of composite materials.
Use of additive technology – 3D printing technology, reverse engineering technology.
Rapid production of molds in the foundry.
Study of materials made by classical and modern additive laser technology of powder metallurgy. Prototype knee implant production technology with specific requirements for shape and function surfaces.
Laboratory exercise
39 hours, compulsory
Teacher / Lecturer
Syllabus
Dimensional chains in production – Calculation for complete interchangeability.
Machining Accuracy – Probability Application.
Thermal balance of the cutting process.
Fundamentals of ISO code. Programming CNC milling machine or lathe.
Conventional optimization of cutting conditions.
Linear programming – Simplex method.
Applications of linear programming.
Production technology of gearing.
Application of advanced Rapid Prototyping technologies.