Course detail
Aircraft Materials and Technology
FSI-OLR-A Acad. year: 2024/2025 Winter semester
The course Aircraft Materials and Technology is focused on compositions, processing effects, microstructures, properties and typical applications of selected aircraft materials. Special material requirements. Aluminium alloys, magnesium alloys, titanium alloys, high strength steels, nickel-base and cobalt-base superalloys, fibre and particle composites, nanocomposites and smart materials for aircraft structures. New research and development, international material standards and equivalents.
Language of instruction
English
Number of ECTS credits
6
Supervisor
Entry knowledge
Basic knowledge of relations between composition, processing, structure and properties of structural materials. Basic terminology of physical metallurgy and material limit states.
Rules for evaluation and completion of the course
The course-unit credit requirements: 100% attendance at seminars. It is also necessary to submit completed and sophisticated computational exercises. Obtaining the credit is a condition for admission to the exam. The exam is written.
Attendance at seminars is compulsory. In case of justified absence, the missed seminar may be compensated with an individual assignment. Continuous checking is made by means of written tests. In case of a failure, it is required to repeat the test.
Aims
The aim of the course Aircraft Materials is to inform students of present state in the area of structural materials for aircraft structures and to provide them with methodical and objective knowledge.
The course Aircraft Materials makes students familiar with representative aircraft structural materials as well as with their optimal use. Students will be able to evaluate different material variants of aircraft structures according their strength, lifetime and damage tolerance.
The study programmes with the given course
Programme N-AST-A: Aerospace Technology, Master's, compulsory
Type of course unit
Lecture
39 hours, optionally
Teacher / Lecturer
Syllabus
1. Introduction to the study of aviation materials
2. Al alloys – 1
3. Al alloys – 2
4. Mg alloys
5. Ti alloys
6. Steels
7. High temperature alloys, Ni and Co alloys
8. Composite materials
9. Sandwich structures
10. Nanomaterials and smart materials
11. Corrosion and corrosion protection
12. Forming of aircraft materials – Basics
13. Forming of aircraft materials – Forming methods overview
Laboratory exercise
2 hours, compulsory
Teacher / Lecturer
Syllabus
3. Heat treatment of aluminium alloys
12. Metal sheet forming of light alloys
Exercise
11 hours, compulsory
Teacher / Lecturer
Syllabus
- Characteristics of aviation structural materials
- Characteristics of wrought and casted aluminium alloys
- Laboratory
- Magnesium alloys
- Titanium alloys
- High-strength steels in aviation
- Optimization of steel hardening process
- Characteristics of high-temperature aviation materials
- High-temperature super alloys, Nickel and Cobalt alloys
- Technology of aviation materials forming
- Formability of aviation materials
- Laboratory
- Rubber-pad forming