Course detail

Linear Algebra II

FSI-SLB Acad. year: 2024/2025 Summer semester

 Students will be familiar with analytical geometry based on modern methods of geometric algebra. They will also gain an overview of advanced parts of linear algebra such as tensors and dual spaces. They will be able to apply linear algebra methods in analytic geometry and engineering problems.

Language of instruction

Czech

Number of ECTS credits

6

Entry knowledge

Successful completion of Linear Algebra I (SLA) is required

Rules for evaluation and completion of the course

Požadavky na udělení zápočtu:

  1. Aktivní účast ve cvičeních
  2. Vnitrosemestrální písemka z analytické geometrie
  3. Závěrečná semestrální práce formou implementace zvoleného úkolu analytické geometrie prostředky projektivní geometrické algebry ve zvoleném software (Matlab, Python, C++, C#)

 

Forma zkoušek:

Zkouška má písemnou a ústní část. Písemná část trvá 120 minut, přičemž bude zadáno 4 otázky kopírujících přednášená témata, Základem ústní zkoušky je diskuze nad vypracovanými příklady a s nimi související teorií. Zkoušející je povinen předem sdělit posluchačům (nejpozději na poslední přednášce) základní informace o průběhu zkoušky a také hlavní zásady týkající se klasifikace.  Pravidla klasifikace: Každá otázka 20 bodů.


Attendance at lectures is recommended, and participation in exercises is controlled. Classes take place according to weekly schedules. The method of replacing missed classes is the responsibility of the teacher.

Aims

Cílem předmětu je seznámit studenty s analytickou geometrií a pokročilými partiemi lineární algebry, konkrétně tenzory, projektivní geometrií a geometrickými algebrami. Součástí předmětu bude
návaznost na řešení inženýrských problémů.


Studenti získají základní znalosti analytické geometrie vybudované moderními metodami geometrických algeber. Dále získají přehled o pokročilých partiích lineární algebry jako jsou tenzory a duální prostory. Budou schopni aplikovat metody lineární algebry v analytické geometrii a v technických problémech.

The study programmes with the given course

Programme B-MAI-P: Mathematical Engineering, Bachelor's, compulsory

Programme C-AKR-P: , Lifelong learning
specialization CLS: , elective

Type of course unit

 

Lecture

26 hours, optionally

Syllabus

Multilinear Algebra (1-4) Analytic Geometry (5-9) Geometric Algebras (10-13)



  1. Dual vector spaces, dual basis, dual representation

  2. Multilinear algebra, symmetric and antisymmetric tensors

  3. Left and right contraction, Hodge isomorphism

  4. Algebra of outer forms, Grassman algebra

  5. Affine matrix geometry

  6. Analytical geometry: Classification of linear objects, relative position

  7. Analytical geometry: Constructions tasks

  8. Analytic geometry: Transformation

  9. Projective matrix geometry

  10. Projective geometric algebra: Basic concepts, algebra G3, Quaternions

  11. Projective Geometric Algebra: Objects and Transformations

  12. Projective Geometric Algebra: Analytic Geometry in PGA

  13. Conformal geometric algebra

Exercise

26 hours, compulsory

Syllabus

1st week: Repetition of the basic concepts of linear algebra, basis, dimension, transition matrix, transformation matrix.


Next weeks: Exercises for the previous week's lecture.