Course detail
Practical Metallography
FSI-0PM Acad. year: 2024/2025 Winter semester
Real manufacturing problems and specific damage (failure) components case studies based on a complex structural and phase material analysis.
Getting acquainted with material analysis related to the use of unsuitable material, microstructure, chemical composition, thermal or chemical-heat treatment or non-optimal technological process of production. The material confusion or the supplier / customer conflicts solution with the specification of the material characteristics.
Confronting acquired knowledge from the field of material sciences with the real needs of technical practice.
The quantity and variety of solved problems and materials is based on more than 20 years of intensive cooperation of the subject's guarantor with industry.
Language of instruction
Czech
Number of ECTS credits
2
Supervisor
Entry knowledge
General knowledge and basic knowledge of mathematics, physics and chemistry from secondary school. Knowledge of material science corresponding to the level of subjects BUM, 3SV, etc.
Rules for evaluation and completion of the course
Evaluation based on active approach during lectures.
Aims
Getting acquainted with the methodology of evaluating real production problems.
Acquiring basic methods of preparation, observation and evaluation of macro and micro structure of metallic and non-metallic materials using modern methods of light and electron microscopy.
Implementation of theoretical knowledge from the field of material sciences into real analysis of causes of damage.
Assessment of real manufacturing problems related to component damage after operational stress, eventually during technology of its production.
Mastering the methodology of assessment of the real problems of practice relating to the material and the quality and technology of its processing.
The study programmes with the given course
Programme B-FIN-P: Physical Engineering and Nanotechnology, Bachelor's, elective
Type of course unit
Lecture
13 hours, optionally
Syllabus
Real manufacturing problems and specific damage (failure) components case studies based on a complex structural and phase material analysis.
Getting acquainted with material analysis related to the use of unsuitable material, microstructure, chemical composition, thermal or chemical-heat treatment or non-optimal technological process of production. The material confusion or the supplier / customer conflicts solution with the specification of the material characteristics.
Laboratory exercise
26 hours, optionally
Syllabus
1. Work safety in a metallographic laboratory. Prediction of mechanical properties on the basis of structure characteristics.
2. Metallographic sampling for metallographic analysis. Selection of a metallographic sample position. Metallographic cut sample orientation, metallographic sample surface. Technological aspects of suitability of the sample selection. Influence of the sampling method on the structure.
3. Grinding, polishing of samples for light microscopy observation. Mechanical polishing, electrolytic polishing, chemical polishing. Laboratory techniques of semi-automatic and automatic preparation of metallographic samples. Etching, colour etching.
4. Structure observation of non-etching samples. Steel purity determination. Baumann printing. Etching samples observation (selection). Macroscopic etching and observation.
5. Replicas preparation. Foils preparation. Samples for scanning electron microscopy.
6. The most frequent types of steels selection and cast iron their structure valuation in terms of standards ČSN.
7. Individual work. Sample preparation and evaluation of the structure (method selection) of the given ferroalloy material.
8. Specific features of copper alloy samples preparation (Cu, Bronze cast and wrought, Brass cast and wrought)
9. Aluminium alloy (cast, wrought, hardenable and non-hardenable) sample preparation.
10. Study of corrosion (outlines). Study of cavitations. Possibilities of studying fatigue processes. Liquation, segregation and study of other non-homogeneities.
11. Bimetal and sandwich composites metallography. Basic aspects of ceramic-metallic materials, SAPs and sintered carbides preparation.
12. Systemization and classification of fractures. Fracture area evaluation methods.
13. Methods of the quantitative evaluation of the structure. Spatial arrangement of structure components (stereo-logical models).