Course detail
Spacecraft Technologies
FSI-OT2-A Acad. year: 2025/2026 Summer semester
The student gets acquainted with the environment in which he will use space technology and for which he will design space technologies. He will also have an idea of the construction and function of rockets and rocket engines of various types and purposes, the scope and problems of their use and the basic problems of their preliminary design.
Language of instruction
English
Number of ECTS credits
4
Supervisor
Department
Entry knowledge
Basic knowledge of space, acquired during the study of physics, basic problems of technical mechanics, including hydromechanics and thermomechanics, knowledge of materials and their properties used in aviation.
Rules for evaluation and completion of the course
The student is evaluated according to the knowledge of the written and oral final exam. The condition for admission to the exam is at least 70% attendance at lectures and fulfilment of all assignments that will be solved within the exercises.
The quality of the ongoing training will be checked through control tests during the exercise. The results of these tests will then greatly affect the final evaluation of the exam.
Aims
The aim is to acquaint students with the basic problems of development and use of rockets and rocket engines, focusing on the development of the ability to use this knowledge for their further work and for comprehensively optimal decision-making.
It is assumed that the student will be able to analyse problems in a broad context, in evaluating the problems from various perspectives, as well as from different levels.
The study programmes with the given course
Programme N-AST-A: Aerospace Technology, Master's, compulsory
Type of course unit
Lecture
26 hours, optionally
Syllabus
1. Rockets, history, classification, arrangement, use
2. Rockets, loads, factors influencing take-off and flight in individual phases
3. Ballistic missiles, characteristics, use
4. Rocket carriers, concept, construction
5. Carrier rockets, introduction to rocket design
6. Spaceports, meaning and purpose, components, security, nature of operation
7. Rocket engines, basic theory of rocket engines
8. Rocket engines, internal ballistics of rocket engines
9. Rocket engines for solid propellants
10. Rocket engines for liquid propellants
11. Rocket engines for liquid propellants
12. Special types of rocket engines
13. Fuels for rocket engines
Exercise
13 hours, compulsory
Syllabus
1. Comparison of historical development of missiles in different countries
2. Vibration analysis
3. External missile ballistics
4. Analysis of the rocket design
5. Basic steps of preliminary rocket design
6. Comparison of spaceports in terms of their geographical location
7. Internal ballistics of a rocket engine
8. Thermodynamic calculation of a rocket engine
9. Calculation of rocket engine thrust on TPH
10. Calculation of thrust and engine operation time on KPH
11. Comparison of special types of rocket engines in terms of their usability
12. Computational comparison of solid fuels for rocket engines
13. Final consultation on the topics covered