Course detail
Fundamentals of Nanoscience
FSI-TZN Acad. year: 2025/2026 Summer semester
The subject gives an overview of fundamental principles of nanoscience in order to show their importance in the next development of nanotechnologies and related areas. The main effort will be aimed at description of changes of electronic structure given by the quantum mechanical confinement of electrons in nanostructures and of quantum phenomena accompanying transport properties of nanostructures. The consequences of a bigger relative number of surface atoms of nanoparticles (compared to bulk materials) on chemical reactivity, cathalytic effectivity and thermal properties of nanostructures will be discussed as well. Simultaneously, examples of applications of these qualitatively new phenomena covering electronics and spintronics, optoelectronics, as well as sensorics and medicine will be shown.
Language of instruction
Czech
Number of ECTS credits
4
Supervisor
Department
Entry knowledge
Elementary Physics, Quantum Physics, Solid State Physics.
Rules for evaluation and completion of the course
The assessment of a student is made upon his performance in practice and quality of a discussion on topics selected at the examination (lecture notes allowed at preparation).
The presence of students at practice is obligatory and is monitored by a tutor. The way how to compensate missed practice lessons will be decided by a tutor depending on the range and content of missed lessons.
Aims
The goal is to provide an overview of qualitatively new phenomena taking place in nanostructures and to demonstrate their application in modern fields of science and technology.
Students will learn the current status of the interdisciplinary field of nanoscience which will also help them to select their own topic (for diploma or doctoral thesis).
The study programmes with the given course
Programme B-FIN-P: Physical Engineering and Nanotechnology, Bachelor's, compulsory
Type of course unit
Lecture
26 hours, optionally
Syllabus
Electronic structure: electronic structure and density of states of 3D – 0D nanostructures, quantum wells, heterostructures, 2D electron gas, quantum dots. Transport properties: quantum point contact – quantum conductivity, Coulomb blockade- single electron transistor (SET), quantum dots and rings- spin control, Bohm-Aharonov effect, etc.. Micro/nanomagnetism for data recording and spintronics – GMR effect, spin valves, domain walls propagation, etc. Influence of surface atoms of nanostructures: reactivity and cathalytic properties of nanostructures.
Exercise
10 hours, compulsory
Syllabus
The calculation of supportive theoretical examples takes place during the whole semester.
Computer-assisted exercise
3 hours, compulsory
Syllabus
See seminars.