Course detail
Synthesis of Nonmetallic Materials
FSI-WCH Acad. year: 2025/2026 Winter semester
The course is focused on the synthesis of non-metallic materials-polymers and ceramic powders, including the behaviour of ceramic colloidal particles in liquid media. The aim of the course is to provide students of material engineering with fundamental physical and chemical information about synthesis of non-metallic materials and their precursors, which are important for understanding the relations between the structure of materials end their (physical) chemical reactivity.
Language of instruction
Czech
Number of ECTS credits
5
Supervisor
Entry knowledge
The knowledge of inorganic, organic and physical chemistry on the secondary school level or basic course of chemistry of mechanical engineering is assumed.
Rules for evaluation and completion of the course
Course-unit credit requirements: attendance at seminars and fulfilment of assignments. Examination verifies the knowledge of the theory and its applications to solving practical problems. The exam is oral with a written preparation time.
Attendance at seminars and fulfilment of assignments is required. In case students do not meet these conditions they can be given additional assignments.
Aims
The aim of the course is to provide the students of material engineering fundamental physical and chemical information about synthesis of non-metallic materials and their precursors, which are important for understanding the relations between the structure of materials end their (physical) chemical reactivity.
Students will be able to use the acquired knowledge in the following master studies of material engineering and to the solution of appropriate problems of industrial practice.
The study programmes with the given course
Programme N-MTI-P: Materials Engineering, Master's, compulsory
Type of course unit
Lecture
26 hours, optionally
Syllabus
1. Polymers: monomers, nomenclature of polymers, polymerisation stage, functionality of monomers, structure of polymers.
2. Chain polymerisation: influence of chemical structure of monomer on polymerisation mechanism, iniciation-propagation-termination-chain transfer; radical, ionic and coordination polymerisation, copolymerisation.
3. Polycondensation polymerisation: influence of monomers structure on polycondensation, mechanisms of poolycondensation.
4. Polyadition: mechamism of polyaditio, block and grafted copolymers. Reaction of polymers: netting of polymers, degradation of polymers.
5. Ceramic powders: conventional preparation method, homogeneous and heterogeneous nucleation, particle growth in solution, coprecipitation.
6. Ceramic powders: sol-gel synthesis of colloids, sol-gel processing of metalorganic compounds, polycondensation sol-gel methods.
7. Ceramic powders: nonconventional preparation methods-hydrothermal, microwave and sonochemical methods, hydrolysis of salt solutions, non-aqeous liquid-phase reactions.
8. Gas-phase syntheses. Emulsion reactions of powders. Freeze- and spray- drying.
9. Polymerisation methods of ceramic synthesis: Synthesis of organometallic polymers. Polymer pyrolysis. Synthesis of non-oxide particles.
10. Biomimetic methods: natural ceramic materials and their formation by biological ways. Biomimetic pricessing of bioceramic.
11. Colloids-attractive forces between colloidal particles. Classification of physical forces. Van der Waals forces. Interaction between surfaces and particles. Hamaker constant.
12. Colloids-electrostatic forces and the electrical double layer: sources of interfacial charge. Electrokinetic phenomena.
13. Colloids and Colloidal stability: Colloid structure. Stability of colloids and mechanisms of stabilization-electrostatic and steric stabilization. DLVO theory. Coagulation of colloids.
Laboratory exercise
26 hours, compulsory
Syllabus
1.Polymers – introduction to polymers
2. Polymers – polymerization
3. Polymers – polycondensation and polyaddition
4. General chemistry – introduction to inorganic chemistry
5. General chemistry – chemical nomenclature
6. General chemistry – solutions
7. General chemistry – chemical equation
8. General chemistry – pH and hydrolysis of salts
9. General chemistry – precipitation reaction and solubility product
10. Laboratories – practical exercises – precipitation reactions