Course detail
Graph Algorithms
FSI-9GRA Acad. year: 2025/2026 Both semester
The course focuses on graph theory and familiarises students with fundamental terms and algorithms. It deals with the following topics: Graph representation. Time complexity of algorithms. Data structures (binary heap, disjoint sets, ...). Eulearian trails, Hamiltonian paths. Breadth-first searching, depth-first searching, backtracking, branch and bound method. Connectivity and reachability. Shortest path problems (Dijkstra's algorithm, Floyd-Warshall algorithm). Network graphs. Trees, spanning tree problem, Steiner tree problems. Fundamentals of computational geometry – visibility graphs, Voronoi diagrams, Delaunay triangulation. Network flows. Graph colouring. Graph matching.
Language of instruction
Czech
Supervisor
Department
Entry knowledge
Successful completion of the course "Graph Algorithms" is conditional on basic knowledge of set theory, combinatorics and operations research.
Rules for evaluation and completion of the course
The course-unit credit is awarded on condition of having described or implemented a nontrivial graph algorithm. The exam has a written form and tests students’ knowledge of terms and fundamental algorithms.
Aims
The course aims to acquaint the students with the graph theory and graph-based algorithms that extend the knowledge acquired in subjects courses focused on artificial intelligence, operations research, project management and computer networks and are commonly used to solve problems in engineering and other areas.
The students will be made familiar with the basics of the graph theory and graph algorithms. This will provide them with tools for using graphs to model various practical problems, which may then be solved by using the graph algorithms.
The study programmes with the given course
Programme D-APM-P: Applied Mathematics, Doctoral, recommended course
Type of course unit
Lecture
20 hours, optionally
Syllabus
1. Definition of a graph and basic terms.
2. Computer representation of a graph.
3. Time and space complexity of algorithms.
4. Graph searching, backtracking, branch and bound method.
5. Applications of path problems, shortest paths, network graphs.
6. Eulerian trails, Hamiltonian paths and circles.
7. Connected components, trees and spanning trees.
8. Steiner trees.
9. Voronoi diagrams, Delaunay triangulation.
10. Graph colouring, cliques.
11.-12. Network flows.
13. Graph matching.