Course detail

Structure of Matter

FSI-9STH Acad. year: 2025/2026 Winter semester

Atomic structure of matter, atomic bonding, examples of structures of molecules and condensed matter, relation of observations of atoms and matter in real and reciprocal space. Photons and de Broglie waves. Quasiparticle concept In condense matter. Dynamics of nuclei in many-atom systems (phonons). Electronic structure of atoms and many atom systems. . Electron gas and plasmons . Relation of thermal, electric, optical, magnetic properties of materials with their microscopic structure. Depending on the doctoral thesis, the topics may be modified..

Language of instruction

Czech

Entry knowledge

Knowledge of physics on the level of HRW..

Rules for evaluation and completion of the course

The doctoral student prepares an essay on the topic related to the dissertation and then a debate is held to demonstrate the doctoral student's orientation in the concepts of condesed matter physics.
The course is based on individual study.

Aims

The course objective is to provide students with basic ideas of modern physics in order to be capable of understanding microscopical nature of matter and principles, which the advanced materials technologies and modern experimental methods are based on.
The knowledge of laws of modern physics and ability to apply the basic principles to physical systems, such as solid state and surfaces, in order to explain and predict the properties and behaviour of such systems.

The study programmes with the given course

Programme D-APM-P: Applied Mathematics, Doctoral, recommended course

Programme D-FIN-P: Physical Engineering and Nanotechnology, Doctoral, recommended course

Type of course unit

 

Lecture

20 hours, optionally

Syllabus

A PhD student who has completed a basic course in physics will gain insight into the laws of modern physics needed to understand the structure of matter and the principles on which modern technology and methods of matter research are based.

Atomic structure of matter, atomic bonding, examples of structures of molecules and condensed matter, relation of observations of atoms and matter in real and reciprocal space. Photons and de Broglie waves. Quasiparticle concept In condense matter. Dynamics of nuclei in many-atom systems (phonons). Electronic structure of atoms and many atom systems. . Electron gas and plasmons . Relation of thermal, electric, optical, magnetic properties of materials with their microscopic structure. Depending on the doctoral thesis, the topics may be modified.