study programme
Design and Process Engineering
Faculty: FMEAbbreviation: D-KPI-AAcad. year: 2025/2026
Type of study programme: Doctoral
Study programme code: P0715D270018
Degree awarded: Ph.D.
Language of instruction: English
Accreditation: 18.2.2020 - 18.2.2030
Mode of study
Full-time study
Standard study length
4 years
Programme supervisor
Doctoral Board
Chairman :
prof. Ing. Martin Hartl, Ph.D.
Councillor internal :
doc. Ing. Jaroslav Katolický, Ph.D.
prof. Ing. Jiří Pospíšil, Ph.D.
doc. Ing. Jaroslav Juračka, Ph.D.
prof. Ing. Radomil Matoušek, Ph.D.
prof. Ing. Josef Štětina, Ph.D.
prof. Ing. Pavel Hutař, Ph.D.
doc. Ing. Petr Blecha, Ph.D., FEng.
prof. Ing. Petr Stehlík, CSc., dr. h. c.
Councillor external :
Ing. Jan Čermák, Ph.D., MBA
Fields of education
Area | Topic | Share [%] |
---|---|---|
Mechanical Engineering, Technology and Materials | Without thematic area | 100 |
Study aims
The main goal of the doctoral study programme is, in accordance with the Higher Education Act, to train highly qualified and educated professionals who are capable of independent scientific, research and creative activities in the field of design and process engineering. The graduates are equipped with knowledge and skills that enable them to work at Czech or international academic institutions or research institutes. The programme focuses on theoretical knowledge as well as practical experience in the field of doctoral studies. Cooperation with international research institutes is highly supported. The study programme is designed to fulfil demands and meet societal and industry requirements for highly educated and qualified professionals in the fields of design and process engineering.
Doctoral study programme is primarily based on research and creative activities of doctoral students. These activities are intensively supported by student participation in national and international research projects. Research areas include design (analysis, conception, design of machinery, vehicles, machine production and energy) and process engineering (analysis, design and projection of processes in the engineering, transport, energy and petrochemical industries).
Graduate profile
A graduate of the doctoral study programme is a highly qualified expert with broad theoretical knowledge and practical skills, which enables him/her to carry out creative and research activities both independently and/or in a scientific team. The graduate is acquainted with current findings in the field of design and process engineering and is able to apply the knowledge in his/her research or creative activities. The graduate is also able to prepare a research project proposal and to oversee a project. At the same time, the graduate is able to make use of theoretical knowledge and transfer it in practice. Moreover, the graduate can adapt findings from related disciplines, cooperate on interdisciplinary tasks and increase their professional qualifications. The graduate participation in national and international research and cooperation with international research institutions contributes to higher level of their professional competences. This experience allows graduates not only to carry out their own scientific activities, but also to professionally present their results, and to take part in international discussions.
The graduate can demonstrate knowledge and skills in three main areas and the synergy produces great outcomes.
1. Broad theoretical knowledge and practical skills closely related to the topic of the dissertation (see below).
2. Professional knowledge and skills necessary to carry out scientific work, research, and creative activities.
3. Interpersonal and soft skills and competencies - the graduate is able to present their ideas and opinions professionally, is able to present and defend the results of their work and to discuss them and work effectively in a scientific team or to lead a team.
According to the topic of the dissertation, the graduate will acquire highly professional knowledge and skills in mechanical engineering, in particular in design and operation of machines, machinery, engineering processes and vehicles and transport vehicles. Thanks to the broad knowledge and skills, graduates can pursue a career in research institutes in the Czech Republic and abroad, as well as in commercial companies and applied research.
Profession characteristics
A graduate of the doctoral study programme is a highly qualified expert with broad theoretical knowledge and practical skills, which enables him/her to carry out creative and research activities both independently and/or in a scientific team. The graduate is acquainted with state-of-the-art findings in the field of design and process engineering and is able to apply the knowledge in his/her research or creative activities. The graduate is also able to prepare a research project proposal and to oversee a project. At the same time, the graduate can make use of theoretical knowledge and transfer it in practice. Moreover, the graduate can adapt findings from related disciplines, cooperate on interdisciplinary tasks and increase their professional qualifications. The graduate typically finds a job as a researcher, academic personnel, computer scientist or designer. The graduate is also well equipped with skills and competences to perform well in managerial positions.
Fulfilment criteria
See applicable regulations, DEAN’S GUIDELINE Rules for the organization of studies at FME (supplement to BUT Study and Examination Rules)
Study plan creation
The rules and conditions of study programmes are determined by:
BUT STUDY AND EXAMINATION RULES
BUT STUDY PROGRAMME STANDARDS,
STUDY AND EXAMINATION RULES of Brno University of Technology (USING "ECTS"),
DEAN’S GUIDELINE Rules for the organization of studies at FME (supplement to BUT Study and Examination Rules)
DEAN´S GUIDELINE Rules of Procedure of Doctoral Board of FME Study Programmes
Students in doctoral programmes do not follow the credit system. The grades “Passed” and “Failed” are used to grade examinations, doctoral state examination is graded “Passed” or “Failed”.
Availability for the disabled
Brno University of Technology acknowledges the need for equal access to higher education. There is no direct or indirect discrimination during the admission procedure or the study period. Students with specific educational needs (learning disabilities, physical and sensory handicap, chronic somatic diseases, autism spectrum disorders, impaired communication abilities, mental illness) can find help and counselling at Lifelong Learning Institute of Brno University of Technology. This issue is dealt with in detail in Rector's Guideline No. 11/2017 "Applicants and Students with Specific Needs at BUT". Furthermore, in Rector's Guideline No 71/2017 "Accommodation and Social Scholarship“ students can find information on a system of social scholarships.
What degree programme types may have preceded
The doctoral study programme in Design and Process Engineering is focused on providing the highest level of tertiary education and is a continuation of the follow-up Master's study programme in Mechanical Engineering and the Bachelor's study programme in Mechanical Engineering, which are currently accredited and implemented at FME BUT. Graduates of other study programmes interested in studying in the Design and Process Engineering doctoral study programme must prove their level of knowledge corresponding to the above-mentioned study programmes.
Issued topics of Doctoral Study Program
- Additive manufacturing of high temperature alloys strenghten by nanoparticle dispersion
The main goal of the work will be to develop and optimize the parameters of 3D printing of precipitation-hardened nickel superalloys with added incoherent boride-based nanoparticles and to determine the relationship between the microstructure and the basic mechanical properties of the newly prepared alloys. Among the sub-objectives of the work will be the preparation of powder mixtures of nickel superalloys using a three-axis electromagnetic vibrating mixer with a graded proportion of reinforcing nanoparticles. Subsequent microstructural analysis using electron microscopy of both powders and 3D printed materials before and after uniaxial mechanical loading at temperatures up to 1000 °C is expected.
- Advanced bearing diagnostics for wind farms
Wind power (WPP) is one of the world's most widespread alternative sources of electricity. The desire to maximize the efficiency of the plant leads to high demands on the mechaniocal design and high reliability of all structural components. Critical components include the driveline bearings. Due to the time-varying loads, it is difficult to reliably determine their service life. At the same time their failure during operation must be prevented, as the entire turbine can be heavily damaged and high reapair cost will be required. The aim of this work is to develop an advanced predictive diagnostic method for monitoring the technical condition of the wind turbine bearings using non-destructive testing methods.
- Advanced downhill bike suspension
The goal of the thesis will be to develop an intelligent suspension system for electric mountain bikes. Current commercially available electrically controlled wheel suspension systems do not utilize the potential of rapid semi-active control. Current systems only enable automatic valve control, which has to be adjusted manually in older dampers and is not able to ensure better-driving characteristics. Fast semi-active damping with magnetorheological dampers enables a qualitative shift in achievable driving comfort and wheel grip on the road. Demonstrators of individual components are currently being developed. However, these components will have to be integrated into the entire functional system and experimentally verify the functionality. The work will focus mainly on identifying the limiting properties of real system elements (dampers, sensors, etc.) and the subsequent design of optimal system control.
- Cooperation with industry partners in the field
The aim is to describe friction principles and develop a methodology for modeling static and kinetic friction in contact between rigid bodies with surface roughness and engineering plastics. The work combines FEM modeling with experiments.
- Development of a magnetorheological shock attenuation system for military applications
In military applications, effective shock attenuation is an important requirement. This may include damping of gun recoil, damping of seats in the event of a vehicle explosion or fall, and more. Current scientific contributions reveals that the combination of a magnetorheological (MR) suspension system together with semi-active control can be a significant advance in this area. Typically, piston velocities are in the units of m/s and high damping forces are achieved. These are therefore quite extreme operating conditions for dampers. The main focus of this work will be study of the behaviour of MR fluid at high velocities and the subsequent application of this knowledge to the design of a magnetorheological damper. The design of sensors and damper control will be important as well. The main focus of the work will be the development and experimental verification of MR suspension systems operating at high piston velocities.
- Development of the measuring system for monitoring and protection of plant grow
The trend towards efficient use of natural resources affects a wide range of sectors, including agriculture. For proper plant growth, it is essential to choose the right irrigation method to avoid underwatering or overwatering the plant and possibly wasting water. To decide whether a plant needs watering, it is necessary to know its current condition. As previous research has shown, plant condition can be reliably monitored using the acoustic emission (AE) method, which has emerged as a sensitive method for diagnosing fatigue damage to bearings. Based on the data obtained from AE sensors, decisions can be made about watering and possibly the dosage of additional soil nutrients, etc. AI control can also be used to make decisions. Automated control can then be used for automated irrigation systems for greenhouses or for hydroponics, etc. The aim of the work is then to develop a suitable measurement method that allows reliable monitoring and to develop an algorithm for evaluating the data obtained.
- Digital twin of wheel-rail contact
The aim of the work is to use experimental methods to develop a model that will describe the frictional behavior of the wheel-rail contact in the presence of lubricants. The model will use real-track data to predict contact friction, allowing the lubrication system to recognize when re-application of lubricant is necessary. The result of the work will have an effect on a more efficient process of lubrication of the contact between the wheel and the rail. Lubricant consumption will be optimized while the wear of contact bodies is reduced.
- Energy efficient electric motors
The goal of the topic is the design development of an electric motor using a structured magnetic circuit produced by the method of 3D metal printing. It is expected that a suitable design of the structured magnetic circuit should increase the efficiency of the electric motor, reduce its weight and at the same time improve cooling. The design of the magnetic circuit will be based on the patented technology of the Department of Technical Diagnostics (EP3373311).
- Heat exchangers with controlled non-uniformity of refrigerant distribution
The topic is focused on the creation of a methodology for designing a new generation of additively produced heat exchangers, using structured materials, meeting all strength requirements while minimizing weight and at the same time allowing to control the distribution of the cooling medium according to the needs of a specific application. As part of the solution to the topic, it is assumed that the existing algorithms of multi-level topological optimization for the purposes of heat exchange will be modified. In addition to changing the stiffness within one component, the algorithm should also allow local control of the cooling performance. Experimental samples as well as functional parts will be realized through metal additive SLM technology, and information on the flow and thermal properties of the structures will be obtained from cooperation with the Institute of Process Engineering.
- Lubrication of contacts with real conformity by greases
The aim is to determine, through experiments and modelling, the effect of contact conformality and lubricant properties on the amount of lubricant available for lubricating point contacts with conformity close to real applications.
- Lubrication of point contacts with natural lubricants
The aim is to describe the formation of lubricating film and friction in point contacts lubricated with natural fatty acids and other substances used as additives.
- Modelling of hydrostatic bearings control elements to ensure lubrication layer stability
The aim is to develop an experimentally verified numerical model of flow control elements ensuring the stability of thin lubrication films of hydrostatic bearings.
- Online monitoring of LPBF process
The aim of this work is to clarify the relationship between the laser powder bed fusion (LPBF) process setup (scanning strategy, speed, power...), defects and specific microstructure in the processed material by means of continuous observation of the process.
- Particle emissions from the wheel-rail interface
The work deals with experimental research on the emission of particulate matter from the wheel-rail interface, especially when applying lubricants and materials for traction enhancement or as a result of the wear process. The aim is to describe the critical factors influencing their formation and effect on the environment and to propose suitable measures.
- Prediction of wear of dental filling materials during tooth cleaning
The research focuses on the analysis of the wear of dental filling materials due to toothbrushing and toothpaste during daily oral hygiene. This is an experimental work in which the effects of the tooth filling material, the shape of the end and hardness of the toothbrush fibres, the abrasiveness of the toothpaste and the effect of the use of manual and electric toothbrushes will be discussed. Attention will also be paid to the effectiveness of plaque removal.
- Processing of advanced materials by Electron Beam Melting
The aim of the work is to verify the possibilities and strategies of processing materials such as tungsten, tantalum, copper or intermetallic alloys TiAl by means of electron beam in vacuum and to evaluate their applicability in industrial applications.
- Reconfigurable mechanical metamaterials
The aim of the work is to describe the mechanisms of purposefully controlled changes in the morphology of mechanical metamaterials due to changes in external force action using advanced computational modelling methods.
- Reducing wear on railway bogies using electronic suspension
The aim of the topic is the development of an electronically controlled suspension system for a railway unit that reduces wear on the bogie and infrastructure. The work includes experimental verification of the benefits of this system using a measuring wheelset on the InterPanter railway unit.
- Research on noise generation and propagation in rail transport
Noise generated by the operation of rolling stock is an ongoing social problem. One of the main sources of strong noise is wheel-rail contact. In the case of abnormal operating conditions, excessive lateral vibration of the wheel can occur, leading to the emission of a strong acoustic signal. Although some hypothetical mechanisms of wheel-rail contact noise behaviour have been described, a number of phenomena have still not been satisfactorily investigated. Especially in the context of the modern approach of adhesion management on risky track sections through the application of liquid or solid substances to the surface or sides of the rail. The aim of this thesis is to investigate the influence of operating conditions in modified contact on the occurrence of unwanted noise and its propagation to the surroundings.
- The use of machine learning in the processing of railway vehicle vibrodiagnostic data
Predictive identification of faults and wear is a key aspect of the safe and efficient operation of railway vehicles. Machine learning methods can be used to train a model from data and generalize it to currently unmeasured data. The goal of the thesis is to train a model using machine learning on data obtained from the chassis of a railway vehicle. The resulting model will then be used for predictive maintenance of the railway bogie.
- Water as a trigger for low adhesion problems between wheel and rail
The aim of the work is to provide experimental evidence of the transient behaviour of wheel-rail contact when contaminated with water and other materials and to explain the nature of this phenomenon based on optical observation of the contact. Emphasis is placed on describing the extent of the problem in terms of operating conditions and parameters of the contaminants. The results will be compared with simulations of a partner organisation.
- Water as an ecological method for friction modification between the wheel and the rail
The aim of the work is to investigate the impact of targeted water application on modifying friction between the wheel and the rail to achieve a desired friction level. A key aspect of this research is the prediction of real friction layer properties on the rail, which interact with the applied water.
- 3D metal printing of magnetic circuits
The aim of the topic is the research and development of structured magnetic circuits produced by the 3D metal printing method. The design of the magnetic circuits will be based on the patented technology of the Research team Technical Diagnostics (EP3373311). This technology will allow the development of highly efficient magnetic circuits. Development can be focused on several areas, such as electromagnetic actuators, valves or sensors.
- 3D printed individualised segmental joint implant: biotribology of articular surface
The aim of the research is to describe the tribological behaviour of 3D printed individualised implants for local replacement of femoral head defects. The aim is to design an implant friction surface that achieves a very low coefficient of friction and minimally wears the opposing articular cartilage. This is an experimental work where suitable biocompatible materials such as titanium alloys produced by additive Selective Laser Melting, CoCrMo alloys and advanced biomaterials such as PEEK or hydrogel will be tested. The result will be a prototype of a local implant for clinical trials.
- 3D-printed metal composites reinforced with 2D nanomaterials for next-generation biomedical implants
The aim is to research and develop a new generation of joint implants using 2D nanomaterials, which allow superlubricity conditions to be reached and thus ensure the replacement operation under extremely low friction coefficient and nearly zero wear. It is supposed that 2D materials represent a milestone in many engineering disciplines, including biomedical engineering. Cooperation with the academic and private sectors is planned within the topic, while the outcome of the thesis is in a new-generation implant which will be biocompatible and suitable for clinical testing.
- 4D printing of magnetically active elastomers
Intensive research and development is currently underway in the field of magnetically active elastomers or hydrogels, which can be produced using so-called 4D printing. 4D printing is a new and completely unique technology that allows printing dynamic 3D structures capable of changing their shape over time. This topic aims to develop equipment and methodology for 4D printing of magnetically active elastomers and hydrogels. Part of the work will be the application of this technology to the issue of micro-robotics.
Course structure diagram with ECTS credits
Study plan wasn't generated yet for this year.