Publication detail
Convenient adjacencies on Z^2
ŠLAPAL, J.
Czech title
Vhodné přilehlosti na Z^2
English title
Convenient adjacencies on Z^2
Type
journal article in Web of Science
Language
en
Original abstract
We discuss graphs with the vertex set Z^2 which are subgraphs of the 8-adjacency graph and have the property that certain natural cycles in these graphs are Jordan curves, i.e., separate Z^2 into exactly two connected components. After considering graphs with the usual connectedness, we concentrate on a graph with a special one.
Czech abstract
V práci jsou diskutovány grafy s množinou vrcholů Z^2, které jsou podgrafy grafu 8-přilehlosti a v nichž jisté přirozené kružnice jsou Jordanovy křivky, tj. rozdělují digitální rovinu Z^2 na právě dvě souvislé komponenty. Nejprve je pro studované grafy uvažována obvyklá souvislost, pak je studován graf se speciální souvislostí.
English abstract
We discuss graphs with the vertex set Z^2 which are subgraphs of the 8-adjacency graph and have the property that certain natural cycles in these graphs are Jordan curves, i.e., separate Z^2 into exactly two connected components. After considering graphs with the usual connectedness, we concentrate on a graph with a special one.
Keywords in Czech
Digitální rovina, graf přilehlosti, souvislost, Jordanova křivka
Keywords in English
Digital plane, adjacency graph, connectedness, Jordan curve
RIV year
2014
Released
01.05.2014
Location
Nis
ISSN
0354-5180
Volume
28
Number
2
Pages from–to
305–312
Pages count
8
BIBTEX
@article{BUT104903,
author="Josef {Šlapal},
title="Convenient adjacencies on Z^2",
year="2014",
volume="28",
number="2",
month="May",
pages="305--312",
address="Nis",
issn="0354-5180"
}