Publication detail

New mathematical model of certain class of continuum mechanics problems

POCHYLÝ, F. FIALOVÁ, S. KRUTIL, J.

Czech title

Nový matematický model pro určité problémy mechanika kontinua

English title

New mathematical model of certain class of continuum mechanics problems

Type

journal article - other

Language

en

Original abstract

This paper presents a variant of a mathematical model of continuum mechanics. Adaptation of the model is focused on the unsteady term. The solution is based on the assumption of the zero value of the divergence vector, which can have a different physical meaning.

Czech abstract

Práce představuje novou variantu matematického modelu mechaniky kontinua. Adaptace modelu se zaměřuje na nestabilní člen. Řešení je založeno na předpokladu nulové hodnoty divergence vektoru, který může mít různý fyzikální význam.

English abstract

This paper presents a variant of a mathematical model of continuum mechanics. Adaptation of the model is focused on the unsteady term. The solution is based on the assumption of the zero value of the divergence vector, which can have a different physical meaning.

Keywords in Czech

Interakce tekutin, pohybová rovnice, mechanika kontinua, Maxwellovy rovnice.

Keywords in English

Fluid structure interaction, momentum equation, continuum mechanics, Maxwell equations.

RIV year

2014

Released

05.02.2014

Publisher

Association for Engineering Mechanics

Location

Česká republika

ISSN

1805-4633

Volume

21

Number

1

Pages from–to

61–66

Pages count

6

BIBTEX


@article{BUT109681,
  author="František {Pochylý} and Simona {Fialová} and Jaroslav {Krutil},
  title="New mathematical model of certain class of continuum mechanics problems",
  year="2014",
  volume="21",
  number="1",
  month="February",
  pages="61--66",
  publisher="Association for Engineering Mechanics",
  address="Česká republika",
  issn="1805-4633"
}