Publication detail
New mathematical model of certain class of continuum mechanics problems
POCHYLÝ, F. FIALOVÁ, S. KRUTIL, J.
Czech title
Nový matematický model pro určité problémy mechanika kontinua
English title
New mathematical model of certain class of continuum mechanics problems
Type
journal article - other
Language
en
Original abstract
This paper presents a variant of a mathematical model of continuum mechanics. Adaptation of the model is focused on the unsteady term. The solution is based on the assumption of the zero value of the divergence vector, which can have a different physical meaning.
Czech abstract
Práce představuje novou variantu matematického modelu mechaniky kontinua. Adaptace modelu se zaměřuje na nestabilní člen. Řešení je založeno na předpokladu nulové hodnoty divergence vektoru, který může mít různý fyzikální význam.
English abstract
This paper presents a variant of a mathematical model of continuum mechanics. Adaptation of the model is focused on the unsteady term. The solution is based on the assumption of the zero value of the divergence vector, which can have a different physical meaning.
Keywords in Czech
Interakce tekutin, pohybová rovnice, mechanika kontinua, Maxwellovy rovnice.
Keywords in English
Fluid structure interaction, momentum equation, continuum mechanics, Maxwell equations.
RIV year
2014
Released
05.02.2014
Publisher
Association for Engineering Mechanics
Location
Česká republika
ISSN
1805-4633
Volume
21
Number
1
Pages from–to
61–66
Pages count
6
BIBTEX
@article{BUT109681,
author="František {Pochylý} and Simona {Fialová} and Jaroslav {Krutil},
title="New mathematical model of certain class of continuum mechanics problems",
year="2014",
volume="21",
number="1",
month="February",
pages="61--66",
publisher="Association for Engineering Mechanics",
address="Česká republika",
issn="1805-4633"
}