Publication detail
Application of the Shannon-Kotelnik theorem on the vortex structures identification
POCHYLÝ, F. KRAUSOVÁ, H. FIALOVÁ, S.
Czech title
Aplikace Shannon - Kotelnikovova teorému na identifikace vírových struktur
English title
Application of the Shannon-Kotelnik theorem on the vortex structures identification
Type
conference paper
Language
en
Original abstract
This paper presents a decomposition of unsteady vector fields, based on the principle of Shannon-Kotelnik theorem. The decomposition is derived from the Fourier transform of the Kotelnik series. The method can be used for the analysis of both forced and self-excited oscillation.
Czech abstract
V práci je uvedena metoda dekompozice nestacionárního vektorového pole, založená na principu Kotělnikovovy metody. Dekompozice je odvozena z Fourierova obrazu Kotělnikovovy řady. Metoda je využitelná k analýze jak vynuceného, tak samobuzeného kmitání.
English abstract
This paper presents a decomposition of unsteady vector fields, based on the principle of Shannon-Kotelnik theorem. The decomposition is derived from the Fourier transform of the Kotelnik series. The method can be used for the analysis of both forced and self-excited oscillation.
Keywords in Czech
Kotělnikův teorém, Fourierova transformace, vírové struktury
Keywords in English
Kotelnik theorem, Fourier transform, vortex structures
RIV year
2014
Released
08.12.2014
Publisher
IOP Publishing
Location
Montreal
ISSN
1755-1307
Book
IOP Conference Series-Earth and Environmental Science
Volume
22
Number
022023
Pages from–to
1–11
Pages count
11
BIBTEX
@inproceedings{BUT112864,
author="František {Pochylý} and Hana {Krausová} and Simona {Fialová},
title="Application of the Shannon-Kotelnik theorem on the vortex structures identification",
booktitle="IOP Conference Series-Earth and Environmental Science",
year="2014",
volume="22",
number="022023",
month="December",
pages="1--11",
publisher="IOP Publishing",
address="Montreal",
issn="1755-1307"
}