Publication detail

Application of the Shannon-Kotelnik theorem on the vortex structures identification

POCHYLÝ, F. KRAUSOVÁ, H. FIALOVÁ, S.

Czech title

Aplikace Shannon - Kotelnikovova teorému na identifikace vírových struktur

English title

Application of the Shannon-Kotelnik theorem on the vortex structures identification

Type

conference paper

Language

en

Original abstract

This paper presents a decomposition of unsteady vector fields, based on the principle of Shannon-Kotelnik theorem. The decomposition is derived from the Fourier transform of the Kotelnik series. The method can be used for the analysis of both forced and self-excited oscillation.

Czech abstract

V práci je uvedena metoda dekompozice nestacionárního vektorového pole, založená na principu Kotělnikovovy metody. Dekompozice je odvozena z Fourierova obrazu Kotělnikovovy řady. Metoda je využitelná k analýze jak vynuceného, tak samobuzeného kmitání.

English abstract

This paper presents a decomposition of unsteady vector fields, based on the principle of Shannon-Kotelnik theorem. The decomposition is derived from the Fourier transform of the Kotelnik series. The method can be used for the analysis of both forced and self-excited oscillation.

Keywords in Czech

Kotělnikův teorém, Fourierova transformace, vírové struktury

Keywords in English

Kotelnik theorem, Fourier transform, vortex structures

RIV year

2014

Released

08.12.2014

Publisher

IOP Publishing

Location

Montreal

ISSN

1755-1307

Book

IOP Conference Series-Earth and Environmental Science

Volume

22

Number

022023

Pages from–to

1–11

Pages count

11

BIBTEX


@inproceedings{BUT112864,
  author="František {Pochylý} and Hana {Krausová} and Simona {Fialová},
  title="Application of the Shannon-Kotelnik theorem on the vortex structures identification",
  booktitle="IOP Conference Series-Earth and Environmental Science",
  year="2014",
  volume="22",
  number="022023",
  month="December",
  pages="1--11",
  publisher="IOP Publishing",
  address="Montreal",
  issn="1755-1307"
}