Publication detail
Extraordinary deformation capacity of smallest carbohelicene springs
ŠESTÁK, P. WU, J. HE, J. POKLUDA, J. ZHANG, Z.
Czech title
Vyjmečná deformační kapacita malých carbohelicene pružin
English title
Extraordinary deformation capacity of smallest carbohelicene springs
Type
journal article in Web of Science
Language
en
Original abstract
The extraordinary deformation and loading capacity of nine different [N]carbohelicene springs under uniaxial tension up to their fracture were computed using the density functional theory. The simulations comprised either the experimentally synthetized springs of hexagonal rings or the hypothetical ones that contained irregularities (defects) as, for example, pentagons replacing the hexagons. The results revealed that the presence of such defects can significantly improve mechanical properties. The maximum reversible strain varied from 78% to 222%, the maximum tensile force varied in the range of 5 nN to 7 nN and, moreover, the replacement of hexagonal rings by pentagons or heptagons significantly changed the location of double bonds in the helicenes. The fracture analysis revealed two different fracture mechanisms that could be related to the configurations of double and single bonds located at the internal atomic chain. Simulations performed with and without van der Waals interactions between intramolecular atoms showed that these interactions played an important role only in the first deformation stage.
Czech abstract
Pomocí ab initio metod byly vypočteny deformační schopnosti devíti různých typů carbohelicene zatížených jednoosým napětím. Simulace zahrnovaly typy experimentálně syntetizovaných carbohelicene skládajících se z šestiúhelníkových prstenů a současně hypotetických, jenž obsahují vady jako, například, pětiúhelníky místo šestiúhelníků. Výsledky odhalily, že přítomnost těchto vad může výrazně zlepšit mechanické vlastnosti. Maximální reverzibilní deformace se pohybovala od 78% do 222%, a maximální tažná v rozmezí od 5 do 7 nN. Navíc, nahrazení šestiúhelníkových prstenů pětiúhelníky nebo sedmiúhelniky výrazně změnila umístění dvojných vazeb v carbohelicene. Analýza odhalila dva různé mechanicmy porušení, které by mohly být spojeny s konfigurací dvojných a jednoduchými vazeb umístěnými na vnitřním atomovém řetězci. Simulace provedené s a bez van der Waalsových interakcí mezi jednotlivými atomy ukázaly, že tyto interakce hrají důležitou roli jen v prvním stupni deformace.
English abstract
The extraordinary deformation and loading capacity of nine different [N]carbohelicene springs under uniaxial tension up to their fracture were computed using the density functional theory. The simulations comprised either the experimentally synthetized springs of hexagonal rings or the hypothetical ones that contained irregularities (defects) as, for example, pentagons replacing the hexagons. The results revealed that the presence of such defects can significantly improve mechanical properties. The maximum reversible strain varied from 78% to 222%, the maximum tensile force varied in the range of 5 nN to 7 nN and, moreover, the replacement of hexagonal rings by pentagons or heptagons significantly changed the location of double bonds in the helicenes. The fracture analysis revealed two different fracture mechanisms that could be related to the configurations of double and single bonds located at the internal atomic chain. Simulations performed with and without van der Waals interactions between intramolecular atoms showed that these interactions played an important role only in the first deformation stage.
Keywords in Czech
ab initio, carbohelicene, deformační kapacita
Keywords in English
ab initio, carbohelicene, deformation capacity
RIV year
2015
Released
10.06.2015
Publisher
Royal Society of Chemistry
ISSN
1463-9076
Volume
17
Number
28
Pages from–to
18684–18690
Pages count
7
BIBTEX
@article{BUT115154,
author="Petr {Šesták} and Jianyang {Wu} and Jianying {He} and Jaroslav {Pokluda} and Zhiliang {Zhang},
title="Extraordinary deformation capacity of smallest carbohelicene springs",
year="2015",
volume="17",
number="28",
month="June",
pages="18684--18690",
publisher="Royal Society of Chemistry",
issn="1463-9076"
}