Publication detail
Asymptotic Stability Of Dynamic Equations With Two Fractional Terms: Continuous Versus Discrete Case
KISELA, T. ČERMÁK, J.
Czech title
Asymptotická stabilita dynamických rovnic se dvěma zlomkovými členy: Spojitý versus diskrétní případ
English title
Asymptotic Stability Of Dynamic Equations With Two Fractional Terms: Continuous Versus Discrete Case
Type
journal article in Web of Science
Language
en
Original abstract
The paper discusses asymptotic stability conditions for the linear fractional difference equation ∇αy(n) + a∇βy(n) + by(n) = 0 with real coefficients a, b and real orders α > β > 0 such that α/β is a rational number. For given α, β, we describe various types of discrete stability regions in the (a, b)-plane and compare them with the stability regions recently derived for the underlying continuous pattern Dαx(t) + aDβx(t) + bx(t) = 0 involving two Caputo fractional derivatives. Our analysis shows that discrete stability sets are larger and their structure much more rich than in the case of the continuous counterparts.
Czech abstract
Článek diskutuje podmínky pro asymptotickou stabilitu lineární diferenční rovnice ∇αy(n) + a∇βy(n) + by(n) = 0 s reálnými koeficienty a, b a reálnými řády α > β > 0 takovými, že α/β je racionální číslo. Pro daná α, β, popíšeme různé typy diskrétních oblastí stability v rovině (a,b) a srovnáme je se oblastmi stability nedávno odvozenými pro odpovídající spojitý model Dαx(t) + aDβx(t) + bx(t) = 0 obsahující dvě Caputovy zlomkové derivace. Naše analýza ukazuje, že diskrétní oblasti stability jsou větší a jejich struktura bohatší než v odpovídajích spojitých případech.
English abstract
The paper discusses asymptotic stability conditions for the linear fractional difference equation ∇αy(n) + a∇βy(n) + by(n) = 0 with real coefficients a, b and real orders α > β > 0 such that α/β is a rational number. For given α, β, we describe various types of discrete stability regions in the (a, b)-plane and compare them with the stability regions recently derived for the underlying continuous pattern Dαx(t) + aDβx(t) + bx(t) = 0 involving two Caputo fractional derivatives. Our analysis shows that discrete stability sets are larger and their structure much more rich than in the case of the continuous counterparts.
Keywords in Czech
zlomková diferenciální rovnice; zlomková diferenční rovnice; asymptotická stabilita; zlomkové Schurovo-Cohnovo kritérium
Keywords in English
fractional differential equation; fractional difference equation; asymptotic stability; fractional Schur-Cohn criterion
RIV year
2015
Released
30.04.2015
ISSN
1311-0454
Volume
18
Number
2
Pages from–to
437–458
Pages count
22
BIBTEX
@article{BUT115854,
author="Tomáš {Kisela} and Jan {Čermák},
title="Asymptotic Stability Of Dynamic Equations With Two Fractional Terms: Continuous Versus Discrete Case",
year="2015",
volume="18",
number="2",
month="April",
pages="437--458",
issn="1311-0454"
}