Publication detail
Performant and Simple Numerical Modeling of District Heating Pipes with Heat Accumulation
KUDELA, L. CHÝLEK, R. POSPÍŠIL, J.
English title
Performant and Simple Numerical Modeling of District Heating Pipes with Heat Accumulation
Type
journal article in Web of Science
Language
en
Original abstract
This paper compares approaches for accurate numerical modeling of transients in the pipe element of district heating systems. The distribution grid itself affects the heat flow dynamics of a district heating network, which subsequently governs the heat delays and entire efficiency of the distribution. For an efficient control of the network, a control system must be able to predict how “temperature waves” move through the network. This prediction must be sufficiently accurate for real-time computations of operational parameters. Future control systems may also benefit from the accumulation capabilities of pipes. In this article, the key physical phenomena affecting the transients in pipes were identified, and an efficient numerical model of aboveground district heating pipe with heat accumulation was developed. The model used analytical methods for the evaluation of source terms. Physics of heat transfer in the pipe shells was captured by one-dimensional finite element method that is based on the steady-state solution. Simple advection scheme was used for discretization of the fluid region. Method of lines and time integration was used for marching. The complexity of simulated physical phenomena was highly flexible and allowed to trade accuracy for computational time. In comparison with the very finely discretized model, highly comparable transients were obtained even for the thick accumulation wall.
English abstract
This paper compares approaches for accurate numerical modeling of transients in the pipe element of district heating systems. The distribution grid itself affects the heat flow dynamics of a district heating network, which subsequently governs the heat delays and entire efficiency of the distribution. For an efficient control of the network, a control system must be able to predict how “temperature waves” move through the network. This prediction must be sufficiently accurate for real-time computations of operational parameters. Future control systems may also benefit from the accumulation capabilities of pipes. In this article, the key physical phenomena affecting the transients in pipes were identified, and an efficient numerical model of aboveground district heating pipe with heat accumulation was developed. The model used analytical methods for the evaluation of source terms. Physics of heat transfer in the pipe shells was captured by one-dimensional finite element method that is based on the steady-state solution. Simple advection scheme was used for discretization of the fluid region. Method of lines and time integration was used for marching. The complexity of simulated physical phenomena was highly flexible and allowed to trade accuracy for computational time. In comparison with the very finely discretized model, highly comparable transients were obtained even for the thick accumulation wall.
Keywords in English
district heating; heat accumulation; pipe; numerical model; Modelica language; Julia language; performance
Released
16.02.2019
Publisher
MDPI
Location
Basel, Switzerland
ISSN
1996-1073
Volume
12
Number
4
Pages from–to
1–23
Pages count
23
BIBTEX
@article{BUT155925,
author="Libor {Kudela} and Radomír {Chýlek} and Jiří {Pospíšil},
title="Performant and Simple Numerical Modeling of District Heating Pipes with Heat Accumulation",
year="2019",
volume="12",
number="4",
month="February",
pages="1--23",
publisher="MDPI",
address="Basel, Switzerland",
issn="1996-1073"
}