Publication detail
Ideal tensile strength of cubic crystals under superimposed transverse biaxial stresses from first principles
ČERNÝ, M. POKLUDA, J.
Czech title
Ideální pevnost kubických krystalů v tahu při superponovaném příčném biaxiálním napětí z prvních principů
English title
Ideal tensile strength of cubic crystals under superimposed transverse biaxial stresses from first principles
Type
journal article in Web of Science
Language
en
Original abstract
Elastic response and strength of perfect crystals is calculated for triaxial loading conditions from first principles. The triaxial stress state is constituted by uniaxial tensile stress and superimposed transverse biaxial stresses. The maximum uniaxial tensile stress is evaluated as a function of the transverse stresses. Results for eight crystals of cubic metals and two orientations <110> and <111> of the primary loading axis are presented and compared with data for <100> direction of loading. Obtained results show that, within a studied range of biaxial stresses, the maximum tensile stress monotonically increases with increasing biaxial tensile stress for most of the studied metals. Within a certain range, the dependence can be mostly approximated by a linear function.
Czech abstract
Elastické odezvy a pevnost dokonalých krystalů je počítána pro tříosé zatížení z prvních principů. Trojosá napjatost je tvořena jednoosým tahovým namáháním a superponovaným příčným biaxiálním napětím. Maximální jednoosé napětí v tahu je vyhodnoceno jako funkce příčného zatížení. Výsledky pro osm krystalů kubických kovů a dvě orientace <110> a <111> osy zatěžování jsou vyhodnoceny a srovnány s údaji pro směr <100>. Získané výsledky ukazují, že v rámci studovaného rozsahu biaxiálních napětí se maximální napětí v tahu monotónně zvyšuje s rostoucí dvouosým tahem pro většinu studovaných kovů. V rámci určitého rozmezí může být tato závislost aproximována lineární funkcí.
English abstract
Elastic response and strength of perfect crystals is calculated for triaxial loading conditions from first principles. The triaxial stress state is constituted by uniaxial tensile stress and superimposed transverse biaxial stresses. The maximum uniaxial tensile stress is evaluated as a function of the transverse stresses. Results for eight crystals of cubic metals and two orientations <110> and <111> of the primary loading axis are presented and compared with data for <100> direction of loading. Obtained results show that, within a studied range of biaxial stresses, the maximum tensile stress monotonically increases with increasing biaxial tensile stress for most of the studied metals. Within a certain range, the dependence can be mostly approximated by a linear function.
Keywords in Czech
Ideální pevnost, ab initio výpočty, triaxiální zatížení
Keywords in English
Ideal strength, ab initio calculations, triaxial loading
RIV year
2010
Released
08.11.2010
ISSN
1098-0121
Journal
PHYSICAL REVIEW B
Volume
82
Number
17
Pages from–to
174106–174106
Pages count
8
BIBTEX
@article{BUT50658,
author="Miroslav {Černý} and Jaroslav {Pokluda},
title="Ideal tensile strength of cubic crystals under superimposed transverse biaxial stresses from first principles",
journal="PHYSICAL REVIEW B",
year="2010",
volume="82",
number="17",
month="November",
pages="174106--174106",
issn="1098-0121"
}