Publication detail
Stability and asymptotic properties of a linear fractional difference equation
ČERMÁK, J. KISELA, T. NECHVÁTAL, L.
Czech title
Stabilita a asymptotické vlastnosti lineární zlomkové diferenční rovnice
English title
Stability and asymptotic properties of a linear fractional difference equation
Type
journal article - other
Language
en
Original abstract
This paper discusses qualitative properties of the two-term linear fractional difference equation with respect to its stability and asymptotics. Some consequences to the theory of Volterra difference equations are presented as well.
Czech abstract
Článek diskutuje kvalitativní vlastnosti dvoučlenné zlomkové diferenční rovnice, se zaměřením na její stabilitu a asymptotiku. Obsahuje rovněž některé důsledky do teorie Volterrových diferenčních rovnic.
English abstract
This paper discusses qualitative properties of the two-term linear fractional difference equation with respect to its stability and asymptotics. Some consequences to the theory of Volterra difference equations are presented as well.
Keywords in Czech
Zlomková diferenční rovnice; Riemannův-Liouvilleův diferenční operátor; Volterrova rovnice; stability; asymptotické chování
Keywords in English
Fractional difference equation; Riemann-Liouville difference operator; Volterra equation; stability; asymptotic behaviour
RIV year
2012
Released
23.07.2012
Publisher
Springer Nature
ISSN
1687-1847
Volume
2012
Number
1
Pages from–to
1–14
Pages count
14
BIBTEX
@article{BUT93931,
author="Jan {Čermák} and Tomáš {Kisela} and Luděk {Nechvátal},
title="Stability and asymptotic properties of a linear fractional difference equation",
year="2012",
volume="2012",
number="1",
month="July",
pages="1--14",
publisher="Springer Nature",
issn="1687-1847"
}