Development and fabrication of graphene Hall probes

Linda Supalová Ústav fyzikálního inženýrství

Hall probes & thesis goals

Graphene Hall probe design

- > field effect transistor arrangement
 - enables control of charge carriers in graphene by applying gate voltage
 - silicon substrate as a global back gate with 285 nm SiO₂ insulation later

electronic measurements

Goals of this work:

- > fabrication of graphene Hall probes based on field effect transistors
- > testing in varying magnetic fields from room temperature to 200 °C with applied gate voltage

Graphene Hall probe fabrication

- **fabrication** by standard nano- & micro-fabrication processes
 - patterning of electrodes by UV mask lithography & Ti/Au deposition
 - 2. graphene **transfer** onto pre-patterned chips
 - patterning of graphene Hall bars by electron beam lithography & plasma etching
 - 4. wire bonding onto chip expanders
- optimizatons:
 - constricted Hall bar
 - SU-8 passivation layer
- quality check of graphene Hall bars after fabrication by Raman spectroscopy mapping

Hall effect measurement

Experimental setup

- homogeneous magnetic field from a pair of ferrite magnets
- magnitude & polarity of magnetic field determined by the distance & orientation of the magnets
- simultaneous mesurement of the field effect (longitudinal voltage V) & the Hall effect (transverse voltage $V_{\rm H}$) in response to applied gate voltage V_{G}

of the fabricated graphene Hall bars

Sensitivity of the Hall probes

- > Hall probe sensitivity expressed by the Hall coefficient $R_{\rm H} = \frac{1}{I} \frac{\partial V_{\rm H}}{\partial B}$
 - Hall elements based on silicon: $R_{\rm H} \sim (100 400) \,\Omega/T^{1}$
 - Hall elements based on graphene: $R_{\rm H} \sim (1000 2000) \Omega/T$
- > Hall coefficient of our graphene Hall probes **consistent** across the whole temperature range
 - $R_{\rm H} (200 \,^{\circ}{\rm C}) \approx 800 \,\Omega/{\rm T}$ about **10x higher** compared to previous graphene Hall probes tested at 200 °C² due to the use of the incorporated field effect transistor

Mobility of charge carriers in graphene Hall probes

- > mobility characterizes how quickly can an electronic device react to electric field
 - mobility of silicon at room temperature: $\mu \sim 1000 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$
- > mobility of charge carriers in our graphene Hall probes calculated from the simultaneous field effect & Hall effect measurements

¹ Popovic. *Hall Effect Devices*. London, U.K. 2004.

² CIUK et al. *IEEE Transactions on Electron Devices*. 2019, **66**(7). DOI: 10.1109/TED.2019.2915632