Course detail

Modeling and Simulation

FSI-RDO-A Acad. year: 2018/2019 Summer semester

This module deals with modelling of dynamic system on computer. Systems are described by ordinary differential equations, differential-algebraic equations or e.g. by state automata. MATLAB and Simulink are used as main tools including their advanced functions and features. Theoretical findings are demonstrated on real educational models controlled from Simulink using I/O card MF624.

Language of instruction

English

Number of ECTS credits

4

Learning outcomes of the course unit

Students gain knowledge about
• linear systems and its analysis
• modelling in MATLAB/Simulink
• modelling of control systems
• practical experience with control of real system using I/O card from Simulink.

Prerequisites

Vectors and matrixes. ODEs. Mathematics and physics in the scope of previous study. Basic knowledge of programming in MATLAB.

Planned learning activities and teaching methods

Lectures, exercises, labs, individual students work.

Assesment methods and criteria linked to learning outcomes

Module is graded according to:
• active participation on exercises/labs
• projects
• tests.

Aims

Students will learn about modelling of dynamic systems (mechanical, electromechanical, control) on computer.

Specification of controlled education, way of implementation and compensation for absences

Evaluation are made on exercises based on evaluation criteria.

The study programmes with the given course

Programme M2I-Z: Mechanical Engineering, Master's
branch M-STI: Mechanical Engineering, recommended course

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

1. Introduction, motivation, examples
2. Dynamic system with continuous time
3. Solution of ODE in Matlab
4. Solution of ODE in Simulinku
5. Application of Maple for equation building
6. Dynamic systems with discrete time
7. Impact, friction and contact modeling in MBS
8. Linearization
9. State space models of linear systems
10. Control of linearized mechanical systems
11. Verification of nonlinear plant model with linear control
12. Stability of linear systems
13. Presentation of semestral project results

Computer-assisted exercise

13 hours, compulsory

Syllabus

1. Introduction to Matlab and Simulink
2.-3. Modelling of linear oscilator
4.-6. Work on semestral project, tutorial