Course detail

Applied Algebra for Engineers

FSI-0AA Acad. year: 2020/2021 Winter semester

In the course Applied Algebra for Engineers, students are familiarised with selected topics of algebra. The acquired knowledge is a starting point not only for further study of algebra and other mathematical disciplines, but also a necessary assumption for a use of algebraic methods in a practical solving of problems in technologies.

Language of instruction

Czech

Number of ECTS credits

2

Learning outcomes of the course unit

The course makes access to mastering in a wide range of results of algebra. Students will apply the results while solving technical problems.

Prerequisites

Basics of linear algebra.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline.

Assesment methods and criteria linked to learning outcomes

Course credit: the attendance, satisfactory solutions of homeworks

Aims

Students will be made familiar with fundaments of algebra, linear algebra, graph theory and geometry. They will be able to apply it in various engineering tasks.

Specification of controlled education, way of implementation and compensation for absences

Lectures: recommended

The study programmes with the given course

Type of course unit

 

Lecture

26 hours, optionally

Syllabus

1. Vector spaces, basis, the group SO(3). Application: Rotation of the Euclidean space.
2. Change of basis matrix, moving frame method. Application: The robotic manipulator.
3. Universal covering, matrix eponential, Pauli matrix, the group SU(2). Application: Spin of particles.
4. Permutation groups, Young tableaux. Application: Particle physics, representations of groups.
5. Homotopy, the fundamental group. Application: Knots in chemistry and molekular biology.
6. Polynomial algebras, Gröbner basis, polynomial morphisms. Application: Nonlinear systems, implicitization, multivariable cryptosystems.
7. Graphs, skeletons of graphs, minimal skeletons. Application: Design of an electrical network.
8. Directed graphs, flow networks. Application: Transport,
9. Linear programming, duality, simplex method. Application: Ratios of alloy materials.
10. Applications of linear programming in game theory.
11. Integer programming, circular covers. Application: Knapsack problem.
12: A reserve.