Publication detail
Stability switches in linear delay difference equations
ČERMÁK, J. JÁNSKÝ, J.
Czech title
Stabilita lineárních diferenčních rovnic se zpožděním
English title
Stability switches in linear delay difference equations
Type
journal article in Web of Science
Language
en
Original abstract
The paper discusses necessary and sufficient conditions for the asymptotic stability of the zero solution of a linear delay difference equation with complex coefficients. Compared to the case when these coefficients real numbers, the stability behaviour of this equation turns out to be much richer. In particular, the equation may switch finite times from asymptotic stability to instability and vice versa.
Czech abstract
Článek diskutuje nutné a postačující podmínky pro asymptotickou stabilitu nulového řešení jisté lineární diferenční rovnice zpožděného typu s komplexními koeficienty. Ve srovnání s případem, kdy tyto koeficienty jsou rálná čísla, je chování rovnice z hlediska stability mnohem bohatší. Speciálně, rovnice může s rostoucím řádem opakovaně měnit typ stability a nestability.
English abstract
The paper discusses necessary and sufficient conditions for the asymptotic stability of the zero solution of a linear delay difference equation with complex coefficients. Compared to the case when these coefficients real numbers, the stability behaviour of this equation turns out to be much richer. In particular, the equation may switch finite times from asymptotic stability to instability and vice versa.
Keywords in Czech
Diferenční rovnice se zpožděním; Asymptotická stabilita
Keywords in English
Delay difference equation; Asymptotic stability; Stability switch
RIV year
2014
Released
15.09.2014
ISSN
0096-3003
Volume
243
Number
9
Pages from–to
755–766
Pages count
12
BIBTEX
@article{BUT109306,
author="Jan {Čermák} and Jiří {Jánský},
title="Stability switches in linear delay difference equations",
year="2014",
volume="243",
number="9",
month="September",
pages="755--766",
issn="0096-3003"
}