Publication detail
Surface Passivation Improves the Synthesis of Highly Stable and Specific DNA-Functionalized Gold Nanoparticles with Variable DNA Density
DEKA, J. MĚCH, R. IANESELLI, L. AMENITSCH, H. CACHO-NERIN, F. PARISSE, P. CASALIS, L.
Czech title
Pasivace povrchu zlepšuje syntézu vysoce stabilní a specificky DNA funkcionalizovaného povrchu Au nanočástic s proměnnou hustotou DNA
English title
Surface Passivation Improves the Synthesis of Highly Stable and Specific DNA-Functionalized Gold Nanoparticles with Variable DNA Density
Type
journal article in Web of Science
Language
en
Original abstract
We report a novel and multifaceted approach for the quick synthesis of highly stable single-stranded DNA (ssDNA) functionalized gold nanoparticles (AuNPs). The method is based on the combined effect of surface passivation by (1-mercaptoundec-11-yl)hexa(ethylene glycol) and low pH conditions, does not require any salt pretreatment or high excess of ssDNA, and can be generalized for oligonucleotides of any length or base sequence. The synthesized ssDNA-coated AuNPs conjugates are stable at salt concentrations as high as 3.0 M, and also functional and specific toward DNA–DNA hybridization, as shown from UV–vis spectrophotometry, scanning electron microscopy, gel electrophoresis, fluorescence, and small angle X-ray scattering based analyses. The method is highly flexible and shows an additional advantage of creating ssDNA-AuNP conjugates with a predefined number of ssDNA strands per particle. Its simplicity and tenability make it widely applicable to diverse biosensing applications involving ssDNA functionalized AuNPs.
Czech abstract
Článek se zabývá pasivací povrchu, která vede se zlepšení syntézy vysoce stabilní a specificky DNA funkcionalizovaného povrchu Au nanočástic s proměnnou hustotou DNA
English abstract
We report a novel and multifaceted approach for the quick synthesis of highly stable single-stranded DNA (ssDNA) functionalized gold nanoparticles (AuNPs). The method is based on the combined effect of surface passivation by (1-mercaptoundec-11-yl)hexa(ethylene glycol) and low pH conditions, does not require any salt pretreatment or high excess of ssDNA, and can be generalized for oligonucleotides of any length or base sequence. The synthesized ssDNA-coated AuNPs conjugates are stable at salt concentrations as high as 3.0 M, and also functional and specific toward DNA–DNA hybridization, as shown from UV–vis spectrophotometry, scanning electron microscopy, gel electrophoresis, fluorescence, and small angle X-ray scattering based analyses. The method is highly flexible and shows an additional advantage of creating ssDNA-AuNP conjugates with a predefined number of ssDNA strands per particle. Its simplicity and tenability make it widely applicable to diverse biosensing applications involving ssDNA functionalized AuNPs.
Keywords in Czech
DNA funktionalizace; Au nanočástice; pasivace povrchu
Keywords in English
DNA functionalization; gold nanoparticles; surface passivation; oligo ethylene glycol; salt-stability; specificity; variable DNA density
RIV year
2015
Released
10.03.2015
ISSN
1944-8252
Volume
7
Number
12
Pages from–to
7033–7040
Pages count
8
BIBTEX
@article{BUT114481,
author="Jashmini {Deka} and Rostislav {Váňa} and Luca {Ianeselli} and Heinz {Amenitsch} and Fernando {Cacho-Nerin} and Pietro {Parisse} and Loredana {Casalis},
title="Surface Passivation Improves the Synthesis of Highly Stable and Specific DNA-Functionalized Gold Nanoparticles with Variable DNA Density",
year="2015",
volume="7",
number="12",
month="March",
pages="7033--7040",
issn="1944-8252"
}