Publication detail
The stability and asymptotic properties of the Theta-methods for the pantograph equation
ČERMÁK, J.
Czech title
Stabilita a asymptotické vlastnosti Theta-metod pro rovnici pantografu
English title
The stability and asymptotic properties of the Theta-methods for the pantograph equation
Type
journal article - other
Language
en
Original abstract
This paper discusses stability and asymptotic properties of a numerical solution of the nonhomogeneous pantograph equation. The utilized discretizations originate from the Theta-methods considered on uniform as well as quasi-geometric mesh.
Czech abstract
Článek se zabývá otázkou stability a asymptotických vlastností numerického řešení nehomogenní rovnice pantografu. Užité diskretizace vycházejí z Theta-metod uvažovaných na stejnoměrné a kvazigeometrické síti.
English abstract
This paper discusses stability and asymptotic properties of a numerical solution of the nonhomogeneous pantograph equation. The utilized discretizations originate from the Theta-methods considered on uniform as well as quasi-geometric mesh.
Keywords in Czech
Rovnice pantografu, Theta metoda, stabilita, asymptotické chování
Keywords in English
Pantograph equation, Theta-method, stability, asymptotic behaviour
RIV year
2011
Released
01.10.2011
Publisher
Oxford University Press
ISSN
0272-4979
Journal
IMA Journal of Numerical Analysis
Volume
31
Number
4
Pages from–to
1533–1551
Pages count
19
BIBTEX
@article{BUT74131,
author="Jan {Čermák},
title="The stability and asymptotic properties of the Theta-methods for the pantograph equation",
journal="IMA Journal of Numerical Analysis",
year="2011",
volume="31",
number="4",
month="October",
pages="1533--1551",
publisher="Oxford University Press",
issn="0272-4979"
}