Publication detail
Stability regions for linear fractional differential systems and their discretizations
ČERMÁK, J. KISELA, T. NECHVÁTAL, L.
Czech title
Oblasti stability pro lineární zlomkové diferenciální systémy and jejich diskretizace
English title
Stability regions for linear fractional differential systems and their discretizations
Type
journal article - other
Language
en
Original abstract
This paper concerns with basic stability properties of linear autonomous fractional differential and difference systems involving derivative operators of the Riemann-Liouville type. We derive stability regions for special discretizations of the studied fractional differential systems including a precise description of their asymptotics.
Czech abstract
Článek diskutuje otázky stability lineárních autonomních zlomkových diferenciálních a diferenčních systémů obsahujících diferenciální operátory Riemannova-Liouvilleova typu. Odvozeny jsou oblasti stability pro speciální diskretizace studovaných zlomkových diferenciálních systémů včetně popisu jejich asymptotiky.
English abstract
This paper concerns with basic stability properties of linear autonomous fractional differential and difference systems involving derivative operators of the Riemann-Liouville type. We derive stability regions for special discretizations of the studied fractional differential systems including a precise description of their asymptotics.
Keywords in Czech
Zlomkový diferenciální systém; zlomkový diferenční systém; asymptotická stabilita; Laplaceova transformace
Keywords in English
Fractional differential system; fractional difference system; asymptotic stability; Laplace transform
RIV year
2013
Released
15.02.2013
ISSN
0096-3003
Volume
219
Number
12
Pages from–to
7012–7022
Pages count
11
BIBTEX
@article{BUT95733,
author="Jan {Čermák} and Tomáš {Kisela} and Luděk {Nechvátal},
title="Stability regions for linear fractional differential systems and their discretizations",
year="2013",
volume="219",
number="12",
month="February",
pages="7012--7022",
issn="0096-3003"
}