Detail předmětu
Teoretická mechanika a mechanika kontinua
FSI-TMM Ak. rok: 2018/2019 Zimní semestr
Předmět představuje první část úvodního kursu teoretické fyziky.
Lagrangeovská formulace mechaniky. Hamiltonův princip nejmenší akce. Eulerovy-Lagrangeovy rovnice. Zákony zachování. Hamiltonovy rovnice. Kanonické transformace. Hamiltonova-Jacobiho rovnice. Integrace pohybových rovnic. Centrální pole. Malé kmity. Základní veličiny pro kontinuum: tenzory napětí a deformace. Rovnice kontinuity. Pohybové rovnice kontinua. Elastické kontinuum. Hookův zákon. Rovnice rovnováhy. Vlny v kontinuu. Ideální tekutiny. Eulerova a Bernoulliho rovnice. Vazké tekutiny. Navierovy-Stokesovy rovnice.
Jazyk výuky
čeština
Počet kreditů
5
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Znalost základních zákonů klasické mechaniky a schopnost je užít pro popis fyzikálních situací a systémů a vysvětlení jejich chování.
Prerekvizity
Znalosti mechaniky částic a systémů částic a mechaniky kontinua na úrovni učebnice HALLIDAY, D. – RESNICK, R. – WALKER, J.: Fyzika, VUTIUM, Brno 2001.
MATEMATIKA: Vektorový a tenzorový počet.
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení
Podmínkou ZÁPOČTU je získání minimálně 50 bodů. Body se získají především za písemné práce, které se budou psát ve cvičeních a budou celkově tři. Účast je nutná nejméně na dvou. V každé práci budou dva příklady, první ze základního kurzu fyziky a druhý z probírané látky. Za první příklad lze získat 10 bodů, za druhý 20. Kromě toho lze získat až 10 bodů za aktivitu ve cvičeních.
ZKOUŠKA se skládá z písemné a ústní části. Písemná část obsahuje čtyři problémy, z toho dva z mechaniky hmotných bodů a tuhých těles a dva z mechaniky kontinua. Příklady jsou podobné těm, které byly zadány pro přípravu k písemným pracem v semestru, a příkladům zadaným k domácímu řešení. V ústní části vedené formou rozhovoru student musí prokázat přiměřenou orientaci v problematice vymezené v podrobné osnově.
Učební cíle
Cílem kursu je získat základní poznatky z teoretické mechaniky a být schopen je užít pro popis chování jednoduchých fyzikálních systémů. Předmět rovněž připravuje pro studium dalších partií teoretické fyziky.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na cvičeních, zejména minimálně na dvou ze tří kontrolních testů, je kontrolována. Způsoby nahrazení neúčasti stanoví učitel.
Použití předmětu ve studijních plánech
Program B3A-P: Aplikované vědy v inženýrství, bakalářský
obor B-FIN: Fyzikální inženýrství a nanotechnologie, povinný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
I. MECHANIKA HMOTNÝCH BODŮ
A) Principy
1.Hamiltonův variační princip
2.Lagrangeovy rovnice
3.Zákony zachování (Zákony zachování a symetrie.)
4.Kanonické rovnice (Hamiltonovy kanonické rovnice. Kanonické transormace. Poissonovy závorky.Liouvillova věta. Hamiltonona-Jacobiho rovnice.)
B) Aplikace
5. Integrace pohybových rovnic (Jednorozměrný pohyb. Pohyb v centrálním poli. Srážky částic.)
6. Pohyb tuhého tělesa
7. Malé kmity (Kmity soustav. Normální souřadnice. Přechod ke kontinuu – vlnová rovnice.)
II. MECHANIKA KONTINUA
A) Teorie pružnosti
1. Tenzor deformace
2. Tenzor napětí
3. Hookův zákon
4. Termodynamika deformace
5. Rovnice rovnováhy izotropních pružných těles
6. Pohybová rovnice izotropního pružného tělesa. Vlny
B) Hydrodynamika
7. Kinematika tekutin
8. Rovnice kontinuity
9. Pohybová rovnice: ideální tekutiny (Eulerovy rovnice, Bernoulliova rovnice), vazké tekutiny (Navierovy-Stokesovy rovnice)
Cvičení
26 hod., povinná
Vyučující / Lektor
Osnova
http://physics.fme.vutbr.cz/ufi.php?Action=0&Id=1051