Detail předmětu
Matematika III-B
FSI-CM-K Ak. rok: 2018/2019 Zimní semestr
Předmět je zaměřen na seznámení studentů se základními metodami řešení obyčejných diferenciálních rovnic a úloh matematické statistiky.
Znalost základní teorie diferenciálních rovnic a metod jejich řešení je nezbytným základem pro studium fyzikálních a technických disciplín, souvisejících především s mechanikou.
Statistické metody jsou zaměřeny na popisnou statistiku, náhodné jevy, pravděpodobnost, náhodnou veličiny a vektory, náhodný výběr, odhady parametrů a testování statistických hypotéz. Úlohy na procvičení látky jsou orientovány na praktické aplikace ve strojírenských oborech.
Jazyk výuky
čeština
Počet kreditů
4
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Studenti získají potřebné znalosti z obyčejných diferenciálních rovnic a matematické statistiky, které jim umožní pochopit a aplikovat deterministické a stochastické modely technických jevů a procesů, založené na těchto metodách.
Prerekvizity
Základy diferenciálního a integrálního počtu.
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení
Podmínky udělení zápočtu: aktivní účast ve cvičeních, zvládnutí celé látky.
Splnění všech podmínek průběžné kontroly znalostí. Získání minimálně poloviny všech možných 30 bodů z obou kontrolních prací. Pokud student tuto podmínku
nesplní, lze v odůvodněných případech stanovit podmínku náhradní.
Zkouška (písemná forma): praktická část (2 příklady z obyčejných diferenciálních rovnic; 2 příklady z pravděpodobnosti a matematické statistiky) s vlastním přehledem vzorců; teoretická část (4 otázky na základní pojmy, jejich vlastnosti, význam a praktické užití);
Zkouška (hodnocení): Do klasifikačního hodnocení se zahrnuje výsledek písemné zkoušky (maximálně 70 bodů) a hodnocení ze cvičení (maximálně 30 bodů). Klasifikační hodnocení studenta: výborně (90-100 bodů), velmi dobře
(80-89 bodů), dobře (70-79 bodů), uspokojivě (60-69 bodů), dostatečně (50-59 bodů), nevyhovující (0-49 bodů).
Učební cíle
Seznámení studentů se základními pojmy, metodami a postupy řešení obyčejných diferenciálních rovnic a matematické statistiky. Formování způsobu myšlení studentů při modelování reálných jevů a procesů ve strojírenských oborech.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na přednáškách je doporučená, účast na cvičeních je povinná a kontrolovaná. Výuka probíhá dle týdenních plánů rozvrhů. Stanovení způsobů náhrady zmeškané výuky je v kompetenci vedoucího cvičení.
Použití předmětu ve studijních plánech
Program B3S-K: Strojírenství, bakalářský
obor B-AIŘ: Aplikovaná informatika a řízení, povinný
Program B3S-K: Strojírenství, bakalářský
obor B-SSZ: Stavba strojů a zařízení, povinný
Program B3S-K: Strojírenství, bakalářský
obor B-STG: Strojírenská technologie, povinný
Typ (způsob) výuky
Konzultace
13 hod., nepovinná
Vyučující / Lektor
Osnova
1. ODR. Základní pojmy. Existence a jednoznačnost řešení.
2. Analytické metody řešení ODR 1. řádu.
3. ODR vyššího řádu. Vlastnosti a metody řešení homegenní lineární ODR vyššího řádu.
4. Vlastnosti a metody řešení nehomogenní lineární ODR vyššího řádu.
5. Soustavy ODR 1. řádu. Vlastnosti a metody řešení homogenních lineárních soustav 1. řádu.
6. Vlastnosti a metody řešení nehomogenních lineárních soustav 1. řádu
7. Okrajový problém pro ODR 2. řádu.
8. Popisná statistika.
9. Náhodné jevy a pravděpodobnost.
10. Náhodná veličina a vektor, funkční a číselné charakteristiky.
11. Základní rozdělení pravděpodobnosti (Bi, H, Po, N), vlastnosti a užití.
12. Náhodný výběr, odhady parametrů (Bi, N).
13. Testování statistických hypotéz o parametrech (Bi, N).