Detail předmětu
Neuronové sítě a evoluční metody
FSI-VSC-K Ak. rok: 2018/2019 Letní semestr
Kurz seznamuje se základními přístupy k Soft Computing a klasickými metodami používanými v této oblasti. Použitelnost metod je demonstrována na řešení jednoduchých inženýrských problémů.
Jazyk výuky
čeština
Počet kreditů
5
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Pochopení základních metod Soft Computing a schopnost jejich implementace.
Prerekvizity
Předpokládá se znalost základních souvislostí ze statistiky, optimalizace, teorie grafů a programování.
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení
Požadavky pro udělení zápočtu: předložení funkčního softwarového projektu, který používá některou z probíraných implementací metod UI. Konkrétní specifikace probíhá na prvním cvičení. Kontrola postupu realizace projektu a konzultace jsou prováděny průběžně. Dále absolvování jednoho testu a splnění všech samostatných úkolů, které jsou průběžně zadávány. Celkem může student získat 40 bodů za cvičení (20 za projekt a 20 za test) a 60 bodů za zkoušku, celkem tedy max. 100 bodů. Hodnocení probíhá dle ECTS, tj. pro úspěšné absolvování musí student v každé části získat alespoň polovinu bodů (20 a 30).
Učební cíle
Cílem kurzu je seznámit studenty se základním prostředky Soft Computing, s možnostmi a přiměřeností jejich použití při řešení inženýrských úloh.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na přednáškách je žádoucí, na cvičeních povinná. Výuka běží podle týdenních plánů. Způsob nahrazení zameškaných cvičení je plně v kompetenci vyučujícího.
Použití předmětu ve studijních plánech
Program M2I-K: Strojní inženýrství, magisterský navazující
obor M-AIŘ: Aplikovaná informatika a řízení, povinný
Typ (způsob) výuky
Konzultace
17 hod., nepovinná
Vyučující / Lektor
Osnova
1. Úvod. Soft computing v kontextu umělé inteligence.
2. Architektury a klasifikace neuronových sítí. Perceptron, ADALINE.
3. Dopředné neuronové sítě, jedno a vícevrstvé sítě. Algoritmus Back Propagation. Optimalizační metody užité při návrhu ANN.
4. Metody shlukové analýzy. Redukce dimenze úlohy. Analýza hlavních komponent.
5. Neuronové sítě typu RBF a RCE. Topologicky organizované neuronové sítě (soutěživé učení, Kohonenovy mapy).
6. Asociativní neuronové sítě (Hopfieldova, BAM), chování, stavový diagram, atraktory, učení.
7. Neuronové sítě typu LVQ, neuronové sítě ART a Neocognitron.
8. Fuzzy množiny, fuzzy čísla, fuzzy logika, Fuzzy inference. ANFIS sítě.
9. Evoluční algoritmy (genetické algoritmy, evoluční strategie, gramatická evoluce, genetické programování).
10. Vybrané optimalizační metaheuristiky (HC12, Simulované žíhání).
11. SWARM inteligence (PSO, ACO, DE).
12. Deterministický chaos
13. Hybridní přístupy a aplikace (neuronové sítě, fuzzy logika, genetické algoritmy).