Detail předmětu
Numerické metody
FSI-2NU Ak. rok: 2019/2020 Letní semestr
Předmět Numerické metody I seznámí studenty se základní kolekcí úloh numerické matematiky. Poukáže na záludnosti numerických výpočtů (chyby, stabilita), uvede studenty do problematiky řešení lineárních a nelineárních rovnic, seznámí je s interpolací, s metodou nejmenších čtverců, s numerickým derivováním a integrováním a s nepodmíněnou minimalizací. Jednoduché úlohy zvládne student spočítat "ručně", složitější na počítači.
Jazyk výuky
čeština
Počet kreditů
4
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Předmět Numerické metody I seznámí studenty se základní kolekcí úloh numerické matematiky. Poukáže na záludnosti numerických výpočtů (chyby, stabilita), uvede studenty do problematiky řešení lineárních a nelineárních rovnic, seznámí je s interpolací, s metodou nejmenších čtverců, s numerickým derivováním a integrováním a s nepodmíněnou minimalizací. Jednoduché úlohy zvládne student spočítat "ručně", složitější na počítači.
Prerekvizity
Numerické metody lineární algebry, aproximace funkcí, numerické derivování a integrování, diferenciální a integrální počet, základy programování v Matlabu.
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení
PODMÍNKY PRO UDĚLENÍ ZÁPOČTU: Účast ve cvičeních, úpěšné absolvování dvou kontrolních písemných prací a zpracování semestrální práce užitím programovacího a vývojového prostředí MATLAB (OCTAVE). Za obě písemné práce lze obdržet 0 až 20 bodů a za semestrální práci 0 až 10 bodů, celkem tedy 0 až 30 bodů. Podmínkou pro udělení zápočtu je zisk alespoň 15-ti bodů, z toho nejméně 10-ti bodů z obou písemných prací. Student, který dostane zápočet, tak získá bodové ohodnocení v rozsahu 15 až 30 bodů, které se mu započítá do výsledné klasifikace předmětu.
ZKOUŠKA: Zkouška je písemná a skládá se z praktické a z teoretické části. V praktické části studenti řeší číselné příklady užitím kalkulačky, v teoretické části pak zodpoví několik otázek, které prověří, jak pochopili podstatu probrané látky. Za zkoušku student obdrží 0 až 70 bodů.
CELKOVÉ HODNOCENÍ: Výsledné bodové hodnocení je součtem bodů získaných od cvičícího (15--30) a od zkoušejícího (0--70).
KLASIFIKACE: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující).
Učební cíle
Cílem předmětu Numerické metody I je seznámit studenty se základními postupy řešení vybraných numerických problémů a vybavit je schopností samostatně tyto problémy řešit jak "ručně" tak pomocí pomocí počítače. Studenti by měli pochopit, že teprve znalost podstatných vlastností jednotlivých numerických metod jim umožní efektivní volbu vhodné metody a odpovídajícího softwarového produktu.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na cvičení je konrolovaná. Výuka probíhá podle týdenních plánů rozvrhů. Stanovení způsobu náhrady zameškané výuky je v kompetenci vedoucího cvičení.
Použití předmětu ve studijních plánech
Program B-FIN-P: Fyzikální inženýrství a nanotechnologie, bakalářský, povinný
Program B3A-P: Aplikované vědy v inženýrství, bakalářský
obor B-MET: Mechatronika, volitelný (nepovinný)
Program B3S-P: Strojírenství, bakalářský
obor B-STI: Základy strojního inženýrství, povinně volitelný
Typ (způsob) výuky
Přednáška
13 hod., nepovinná
Vyučující / Lektor
Osnova
Dvouhodinová přednáška se koná jednou za 14 dní.
1-2. týden. Úvod do problematiky numerických metod: Chyby v numerických výpočtech. Reprezentace čísel v počítači. Podmíněnost úloh, stabilita algoritmů.
Řešení soustav lineárních rovnic: Gaussova eliminační metoda. LU rozklad. Výběr hlavních prvků.
3-4. týden. Řešení soustav lineárních rovnic: Vliv zaokrouhlovacích chyb. Podmíněnost. Iterační metody (Jacobiova, Gaussova-Seidelova, SOR).
Aproximace funkcí: Lagrangeův, Newtonův a Hermitův interpolační polynom.
5-6. týden. Aproximace funkcí: Interpolace po částech lineární, po částech kubická Hermitova. Kubický interpolační splajn. Metoda nejmenších čtverců.
7-8. týden. Numerické derivování: Základní formule, Richardsonova extrapolace.
Numerické integrování: Základní formule (obdélníková, lichoběžníková, Simpsonova). Gaussovy formule. Složené formule. Adaptivní integrace.
9-10. týden. Řešení jedné nelineární rovnice: metoda bisekce, Newtonova metoda, metoda sečen, metoda regula falsi, metoda inverzní kvadratické interpolace, metoda prosté iterace. Řešení soustav nelineárních rovnic: Newtonova metoda, metoda prosté iterace.
11-12. týden. Jednorozměrná minimalizace: metoda zlatého řezu, metoda kvadratické interpolace.
Minimalizace funkcí více proměnných: Nelderova-Meadova metoda, metoda největšího spádu, Newtonova metoda.
13. týden. Rezerva přednášejícího.
Cvičení s počítačovou podporou
26 hod., povinná
Vyučující / Lektor
Osnova
Cvičení probíhají ve dvoutýdenních cyklech, střídavě v učebně s tabulí a v počítačové učebně. Program cvičení odpovídá tématům přednášek.