Detail předmětu
Fourierovské metody v optice a ve strukturní analýze
FSI-TFM Ak. rok: 2019/2020 Letní semestr
Přednáška podává výklad Fourierovy transformace funkcí více proměnných a jejích aplikací v teorii difrakce a ve strukturní analýze. V úvodních částech je podrobně probrána definice Fourierovy transformace, pojem prostorové frekvence a spektra prostorových frekvencí a význam Fourierovy transformace v teorii difrakce. V další části jsou vyloženy vlastnosti Fourierovy transformace a ilustrovány Fraunhoferovými difrakčními jevy. Tím se vytváří přehled o obecných vlastnostech difrakčních jevů tohoto typu. V závěru je podána kinematická teorie difrakce na krystalech pojatá jako aplikace Fourierovy transformace trojrozměrných mřížek. V teoretických cvičeních se procvičují techniky analytických výpočtů Fourierovy transformace, v laboratorních cvičeních se na optickém difraktografu demonstrují Fraunhoferovy difrakční jevy. Kurs klade důraz na vyjasnění souvislostí difrakce v optice (dvojrozměrné objekty) a ve strukturní analýze (trojrozměrné objekty). Ukazuje, co je společné jednotlivým metodám strukturní analýzy (rtg, neutrony, LEED, HEED) a poskytuje základy pro práci ve fourierovské optice.
Jazyk výuky
čeština
Počet kreditů
4
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Schopnost počítat Fourierovu transformaci.
Znalost kinematické teorie difrakce ve strukturní analýze.
Schopnost interpretovat Fraunhoferovy difrakční jevy v optice.
Prerekvizity
Základní kurz fyziky. Lineární algebra. Diferenciální a integrální počet funkcí více proměnných.
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení
Podmínky pro udělení zápočtu: aktivní účast ve cvičeních. Zkouška: Ústní. Ověřuje se detailní praktická i teoretická znalost probrané látky. Zkoušený má devadesát minut na přípravu a může používat jakoukoli literaturu.
Učební cíle
Cílem kursu je získání počtářské erudice při analytických výpočtech Fourierovy transformace a porozumění kinematické teorii difrakce ve strukturní analýze a Fraunhoferovým difrakčním jevům v optice.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na cvičení je kontrolována vyučujícím, v odůvodněných případech lze nahradit neúčast na cvičení způsobem, který bude individuálně stanoven po domluvě s vyučujícím.
Použití předmětu ve studijních plánech
Program N-FIN-P: Fyzikální inženýrství a nanotechnologie, magisterský navazující, volitelný
Program B3A-P: Aplikované vědy v inženýrství, bakalářský
obor B-FIN: Fyzikální inženýrství a nanotechnologie, volitelný (nepovinný)
Program M2A-P: Aplikované vědy v inženýrství, magisterský navazující
obor M-PMO: Přesná mechanika a optika, povinný
Typ (způsob) výuky
Přednáška
13 hod., nepovinná
Vyučující / Lektor
Osnova
1. Diracova distribuce, její definice, vlastnosti a vyjádření v různých soustavách souřadnic. Příklady.
2. Fourierova transformace, definice, fundamentální věta. Fourierova transformace v limitě. Příklady. Difrakce rovinné vlny na trojrozměrném objektu, Ewaldova kulová plocha.
3. Fraunhoferova difrakce jako Fourierova transformace funkce propustnosti. Významy proměnné ve Fourierově transformaci. Prostorová frekvence a spektrum prostorových frekvencí.
4. Linearita Fourierovy transformace a Babinetova věta. Příklady. Rayleighova-Parsevalova věta. Příklady. Vlastnosti symetrie Fourierovy transformace. Středová symetrie, zrcadlová symetrie, místa nulové amplitudy. Friedelův zákon.
5. Fourierova transformace funkcí, které lze ztotožnit lineární regulární transformací souřadnic. Posunutí, rotace.
6. Konvoluce a Fourierova transformace konvoluce.
7. Fourierova transformace funkce charakterizující soustavu identických a stejně orientovaných objektů. Vzorkovací teorém.
8. Fourierova transformace průmětu. Abbeova transformace a Abbeova věta.
9. Nekonečná mřížka tvořená body a její Fourierova transformace.
10. Nekonečná krystalová mřížka a její Fourierova transformace. Strukturní amplituda.
11. Konečná mřížka a její Fourierova transformace. Mřížková a tvarová amplituda. Vyjádření mřížkové amplitudy součtem tvarových amplitud.
12. Podmínky pro směry hlavních difrakčních maxim při difrakci na mřížkách. Laueovy rovnice, Braggova rovnice.
13. Základní metody strukturní analýzy: rentgenová difrakce, elektronová difrakce (LEED, HEED), neutronová difrakce.
Cvičení
26 hod., povinná
Vyučující / Lektor
Osnova
1. Příklady funkcí vedoucích v limitě na Diracovu distribuci.
2. Výpočty Fourierovy transformace.
3. Demonstrace Fraunhoferových difrakčních jevů v laboratoři.
4. Fourierova transformace charakteristické funkce kosodélníka.
5. Funkce {sin[knax/2]}/{sin[kax/2]}.
6. Demonstrace Fraunhoferových difrakčních jevů v laboratoři. Interpretace Fraunhoferových difrakčních jevů.
7. Fraunhoferova difrakce na otvorech tvaru mnohoúhelníků.
8. Fourierova transformace Fourierových řad.
9. Fourierova transformace dvourozměrné mřížky. Interpretace Fraunhoferovy difrakce.
10. Výpočty strukturních faktorů prostorově centrované, plošně centrované, diamantové a h.c.p. struktrury.
11. Interpretace debyegramu diamantu.
12. Tvarové amplitudy mnohostěnů, tvary difrakčních stop při difrakci na konečných mřížkách, ilustrace vzorkovacího teorému.