Detail předmětu

Základy lineární algebry

FSI-TLA Ak. rok: 2019/2020 Zimní semestr

Předmět se zabývá těmito tématy:
Vektorové prostory, matice a maticové operace, determinanty, matice ve schodovitém tvaru a hodnost matice, systémy lineárních rovnic,
Euklidovské prostory, skalární součin vektorů, vlastní hodnoty a vlastní vektory čtvercové matice, diagonalizace, Základy analytické geometrie: lineární útvary

Jazyk výuky

čeština

Počet kreditů

2

Zajišťuje ústav

Výsledky učení předmětu

Studenti získají základní znalosti z algebraických operací, lineární algebry, vektorových a euklidovských prostorů a analytické geometrie. Budou schopni pracovat s maticovými operacemi, řešit systémy lineárních rovnic a aplikovat metody lineární algebry v analytické geometrii a v technických problémech. Po absolvování předmětu budou studenti připraveni pro studium dalších matematických a technických disciplin.

Prerekvizity

Požadují se znalosti středoškolské matematiky.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.

Způsob a kritéria hodnocení

Požadavky na udělení zápočtu: Aktivní účast ve cvičeních.
Forma zkoušek: Zkouška má písemnou a ústní část. Písemná část trvá 120 minut, přičemž bude zadáno 5 otázek kopírujících přednášená témata,
Základem ústní zkoušky je společné projítí písemné zkoušky. Zkoušející je povinen předem sdělit posluchčům (nejpozději na poslední přednášce) základní informace o průběhu zkoušky a také hlavní zásady týkající se klasifikace.
Pravidla klasifikace: Každá otázka 20 bodů. Celkem je možno dosáhnout 100 bodů.
Výsledná klasifikace:
A (výborně): 90-100 bodů
B (velmi dobře): 80-89 bodů
C (dobře): 70- 79bodů
D (uspokojivě): 60-69 bodů
E (dostatečně): 50-59 bodů
F (nevyhověl): 0-49 bodů

Učební cíle

Cílem předmětu je seznámit studenty se základy algebraických operací, lineární algebry, vektorových a euklidovských prostorů a analytické geometrie, aby byli schopni studovat navazující části matematiky a technických předmětů a řešit příslušné inženýrské problémy. Dalším úkolem předmětu je rozvíjet logické myšlení studentů.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na přednáškách je doporučená, účast na cvičeních je kontrolovaná. Výuka probíhá podle týdenních rozvrhů. Způsob nahrazování zameškané výuky je v kompetenci učitele.

Použití předmětu ve studijních plánech

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Maticové operace, včetně inverzí
2. Determinanty a jejich vlastnosti (forma objemu)
3. Systémy lineárních rovnic, řádkové úpravy a kanonické tvary
4. Lineární závislost a nezávislost
5. Podprostory, dimenze a báze
6. Lineární transformace
7. Metoda pohyblivého reperu
8. Ortogonální báze a ortogonální projekce
9. Gram-Schmidtův ortogonalizační proces
10. Kvaterniony, Spinová grupa
11. Vlastní čísla, vlastní vektory
12. Diagonalizace matic
13. Analytická geometrie

Cvičení

13 hod., povinná

Vyučující / Lektor

Osnova

1. týden: Základní pojmy z teorie množin, operace s množinami, zobrazení.
Další týdny: Cvičení k přednášce z předcházejícího týdne.