Detail předmětu
Numerické metody II
FSI-SN2 Ak. rok: 2021/2022 Letní semestr
Předmět Numerické metody II navazuje na kurz Numerické metody I a má seznámit studenty se základními postupy řešení dalších vybraných numerických problémů, které se často vyskytují při řešení praktických technických úloh. Pochopení podstaty probíraných numerických algoritmů si studenti ověří a prohloubí samostatným řešením úloh u počítače tak, že kvalifikovaně použijí hotový numerický software a některé algoritmy si také sami naprogramují. Probíraná témata: Výpočet vlastních čísel a vektorů. Řešení počátečních úloh pro obyčejné diferenciální rovnice. Řešení okrajových úloh pro obyčejné diferenciální rovnice. Řešení parciálních diferenciálních rovnic eliptického, parabolického a hyperbolického typu. Zvládnutí probírané látky si studenti prokáží zpracováním semestrálního projektu.
Jazyk výuky
čeština
Počet kreditů
4
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Předmět Numerické metody II seznámí studenty s další kolekcí úloh numerické matematiky. Studenti získají znalosti o aproximaci vlastních čísel a vektorů, o řešení počátečních a okrajových úloh pro obyčejné diferenciální rovnice a o řešení eliptické, parabolické a hyperbolické parciální diferenciální rovnice. Získané znalosti si studenti ověří a prohloubí zpracováním několika projektů.
Prerekvizity
Diferenciální a integrální počet funkcí jedné a více proměnných. Základy lineární algebry. Obyčejné diferenciální rovnice. Numerické metody řešení lineárních a nelineárních rovnic. Interpolace. Programování v MATLABu.
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení
PODMÍNKY PRO UDĚLENÍ ZÁPOČTU: Účast ve cvičeních, zpracování semestrální práce a úkolů zadaných na cvičeních, ve kterých studenti zúročí poznatky získané na přednáškách. Student, který dostane zápočet, získá také bodové ohodnocení v rozsahu 0 až 30 bodů, které se mu započítá do výsledné klasifikace předmětu.
ZKOUŠKA je ústní. Za zkoušku student obdrží 0 až 70 bodů.
CELKOVÉ HODNOCENÍ: Výsledné bodové hodnocení je součtem bodů získaných od cvičícího (0--30) a od zkoušejícího (0--70).
KLASIFIKACE: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující).
HODNOCENÍ je plně v kompetenci zkoušejícího. Jestliže úspěšnost měříme v procentních bodech, pak je klasifikace provedena takto: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující).
Učební cíle
Cílem předmětu Numerické metody II je seznámit studenty se základními postupy řešení vybraných numerických problémů a vybavit je schopností samostatně tyto problémy řešit pomocí počítače. Studenti by měli pochopit, že teprve znalost podstatných vlastností jednotlivých numerických metod jim umožní efektivní volbu vhodné metody a odpovídajícího softwarového produktu. Důležitou součástí předmětu je samostatná práce na zadaných projektech.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na přednáškách je žádoucí, účast ve cvičeních je povinná. Výuka probíhá podle týdenních rozvrhů. Způsob náhrady zameškané výuky je plně v kompetenci cvičícího.
Použití předmětu ve studijních plánech
Program B-MAI-P: Matematické inženýrství, bakalářský, povinný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
1. Problém vlastních čísel: základní poznatky.
2. Problém vlastních čísel: mocninná metoda, QR metoda
3. Problém vlastních čísel: Arnoldiho metoda, Jacobiho metoda, metoda bisekce, výpočet singulárního rozkladu.
4. Počáteční úlohy pro ODR: základní pojmy (diskretizační chyba, stabilita,...).
5. Počáteční úlohy pro ODR: Rungovy-Kuttovy metody, řízení délky kroku.
6. Počáteční úlohy pro ODR: Adamsovy metody, technika prediktor-korektor.
7. Počáteční úlohy pro ODR: metody zpětného derivování, tuhé systémy ODR.
8. Okrajové úlohy pro ODR: metoda střelby, diferenční metoda a metoda konečných objemů.
9. Okrajové úlohy pro ODR: metoda konečných prvků.
10. PDR eliptického typu: diferenční metoda, metoda konečných objemů.
11. PDR eliptického typu: metoda konečných prvků.
12. PDR parabolického a hyperbolického typu: metoda přímek, stabilita, metody časové diskretizace.
13. Hyperbolická rovnice prvního řádu: metoda přímek, stabilita, metoda charakteristik.
Cvičení s počítačovou podporou
26 hod., povinná
Vyučující / Lektor
Osnova
Ke každému z témat přednášky studenti sestavují programy v MATLABu a ověřují, jak metody fungují. Kromě toho studenti samostatně zpracovávají zadané projekty.