Detail předmětu
Algoritmy umělé inteligence
FSI-VAI-A Ak. rok: 2022/2023 Letní semestr
Kurz seznamuje se základními přístupy k algoritmům umělé inteligence a klasickými metodami používanými v této oblasti. Důraz je kladen na automatické dokazování formulí, reprezentaci znalostí a řešení úloh. Použitelnost metod je demonstrována na řešení jednoduchých inženýrských problémů.
Jazyk výuky
angličtina
Počet kreditů
4
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Pochopení základních metod umělé inteligence a schopnost jejich implementace.
Prerekvizity
Předpokládá se znalost algoritmizace, programování a základů matematické logiky a teorie pravděpodobnosti.
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení
Požadavky pro udělení zápočtu: absolvování průběžných testů a předložení funkčního softwarového projektu, který používá některou z probíraných metod UI. Celkem může student získat 40 bodů za cvičení (20 za testy a 20 za projekt) a 60 bodů za zkoušku, celkem tedy max. 100 bodů. Hodnocení probíhá dle ECTS, tj. pro úspěšné absolvování musí student v každé části získat alespoň polovinu bodů (20 a 30).
Učební cíle
Cílem kurzu je seznámit studenty se základními prostředky umělé inteligence, s možnostmi a přiměřeností jejich použití při řešení inženýrských úloh.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na přednáškách je žádoucí, na cvičeních povinná. Výuka běží podle týdenních plánů. Způsob nahrazení zameškaných cvičení je plně v kompetenci vyučujícího.
Použití předmětu ve studijních plánech
Program N-MAI-A: Mathematical Engineering, magisterský navazující, povinně volitelný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Osnova
1. Úvod do umělé inteligence.
2. Stavový prostor, neinformované prohledávání.
3. Informované prohledávání stavového prostoru.
4. Řešení problémů rozkladem na podproblémy, metody prohledávání AND/OR grafu.
5. Metody hraní her.
6. Úlohy se splňováním omezení.
7. Predikátová logika a rezoluční metoda.
8. Hornova logika a logické programování.
9. Netradiční logiky.
10. Reprezentace znalostí.
11. Reprezentace a zpracování neurčitosti.
12. Bayesovské a rozhodovací sítě.
13. Markovské rozhodovací procesy.
Cvičení s počítačovou podporou
26 hod., povinná
Osnova
1. Úvodní motivační příklady.
2. Metody neinformovaného prohledávání stavového prostoru.
3. Metody informovaného prohledávání stavového prostoru.
4. Algoritmus A* a jeho modifikace.
5. Metody prohledávání AND/OR grafu.
6. Úlohy se splňováním omezení.
7. Metody hraní her.
8. Predikátová logika a rezoluční metoda.
9. Logické programování a jazyk Prolog.
10. Řešení úloh UI v Prologu.
11. Produkční a expertní systémy.
12. Bayesovské sítě.
13. Obhájení semestrálních prací.