Detail předmětu

Konstruktivní geometrie

FSI-1KD-A Ak. rok: 2022/2023 Zimní semestr

Kurz konstruktivní gemetrie shrnuje a upřesňuje základní geometrické pojmy, včetně základních geometrických zobrazení, a seznamuje studenty s některými druhy promítání, jejich vlastnostmi a aplikacemi. Důraz je kladen na Mongeovo promítání a pravoúhlou axonometrii. Jsou uvedeny také základy rovinné kinematické geometrie. Velká část kurzu je věnována zobrazování křivek a ploch inženýrské praxe a některým potřebným konstrukcím, jako jsou např. rovinné řezy a průniky.
Tato zobrazování a příslušné konstrukce jsou doplněny modelováním v softwaru Rhinoceros.

Jazyk výuky

angličtina

Počet kreditů

5

Zajišťuje ústav

Výsledky učení předmětu

Předmět konstruktivní geometrie umožňuje studentům získat orientaci v základních geometrických pojmech a souvislostech mezi nimi, znalosti řešení prostorových úloh, vlastností křivek a ploch a využívání těchto poznatků při řešení úloh technické praxe.

Prerekvizity

Studenti musí znát základy středoškolské matematiky, zejména geometrie.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.

Způsob a kritéria hodnocení

POŽADAVKY NA UDĚLENÍ ZÁPOČTU: Účast ve cvičení, odevzdání dvou semestrálních prací, kde každá je hodnocena maximálně pěti body, získání minimálně 5 bodů z 10 možných na kontrolní práci zařazenou cca v 9. týdnu výuky.

ZKOUŠKA: Zkouška má praktickou a teoretickou část. Praktická část trvá 90 minut a obsahuje 3 příklady, za které je možné získat maximálně 60 bodů. Za teoretickou část lze získat maximálně 20 bodů.

PRAVIDLA KLASIFIKACE:
1. Výsledky ze cvičení (maximálně 20 bodů)
2. Výsledky z praktické části zkoušky (maximálně 60 bodů)
3. Výsledky z teoretické části zkoušky (maximálně 20 bodů)

Klasifikační hodnocení studenta dle ECTS:
0-49 bodů: F
50-59 bodů: E
60-69 bodů: D
70-79 bodů: C
80-89 bodů: B
90-100 bodů: A

Učební cíle

Cílem předmětu je prohloubit prostorovou představivost, seznámit studenty s principy zobrazování a důležitými vlastnostmi některých křivek a ploch. Úkolem kurzu je uvést studenty do základů mezinárodního jazyka inženýrů, tj. deskriptivní, resp. konstruktivní geometrie, aby mohli posléze tyto znalosti tvůrčím způsobem uplatnit v odborných předmětech i při využívání výpočetní techniky.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Je vyžadována účast na cvičení. Při absenci ve cvičení je v kompetenci vyučujícího stanovit náhradní podmínku.

Použití předmětu ve studijních plánech

Program B-STI-A: Fundamentals of Mechanical Engineering, bakalářský, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova


  1. kuželosečky, ohniskové vlastnosti kuželoseček, bodová konstrukce kuželosečky, oskulační kružnice, konstrukce tečny z daného bodu, průměry a střed kuželosečky, sdružené průměry, proužková konstrukce elipsy, Rytzova konstrukce (trojúhelníková)

  2. středové, rovnoběžné promítání a jejich vlastnosti (bod, přímka, rovina, rovnoběžné přímky, kolmé přímky), kolineace mezi rovinami, středová kolineace, osová afinita, kružnice ve středové kolineaci

  3. Mongeovo promítání – základ

  4. Mongeovo promítání – dokončení (sklápění, otáčení roviny, zobrazení kružnice, vzdálenost bodu od roviny a od přímky, průsečík přímky s rovinou)

  5. pravoúhlá axonometrie – základ

  6. pravoúhlá axonometrie – dokončení

  7. elementární plochy a tělesa, řezy, průniky s přímkou, Zářezová metoda – jen hranové těleso

  8. tělesa a jejich řezy – pokračování, průnik elementárních těles

  9. nevlastní body (axiomy, incidence, Euklidův postulát, projektivní axiom, geometrický model projektivní roviny a projektivního prostoru, homogenní souřadnice vlastního a nevlastního bodu, součet a rozdíl), kinematika, cyklické křivky, odvození parametrických rovnic kinematických křivek v projektivní rovině

  10. odvození parametrické rovnice šroubovice v projektivním prostoru, konstrukce šroubovice v MP a PA

  11. rozdělení šroubových ploch, odvození parametrických rovnic v projektivním prostoru, konstrukce přímkové šroubové plochy

  12. rozdělení rotačních ploch, odvození parametrických rovnic v projektivním prostoru, konstrukce rotačních ploch, řezy rotačních ploch

  13. rozvinutelné a nerozvinutelné plochy

Cvičení s počítačovou podporou

26 hod., povinná

Vyučující / Lektor

Osnova

1. 2. Rhinoceros 3D – seznámení s prostředím, kuželosečky, ohniskové vlastnosti kuželoseček
3. 4. Mongeovo promítání
5. 6. Axonometrie
7. 8. Elementární plochy a tělesa, řezy, průniky s přímkou
9. 10. Cyklické křivky, šroubovice
11. 12. Šroubové plochy, rotační plochy

Účast na cvičeních je povinná.