Detail předmětu

Dynamické a vícerozměrné stochastické modely

FSI-9DVM Ak. rok: 2022/2023 Letní semestr

Předmět je určen pro studenty doktorského studia a je zaměřen na moderní stochastické metody (stochastické procesy a jejich zpracování, vícerozměrná rozdělení pravděpodobnosti, vícerozměrná lineární a nelineární regresní analýza, korelační analýza, metoda hlavních komponent, faktorová analýza, diskriminační analýza, shluková analýza) pro modelování dynamických a vícerozměrných problémů při realizaci a vyhodnocování experimentů v rámci vědeckovýzkumné práce studentů.

Jazyk výuky

čeština

Zajišťuje ústav

Výsledky učení předmětu

Studenti získají hlubší znalosti z moderních stochastických metod, které jim umožní modelovat dynamické a vícerozměrné technické jevy a procesy pomocí výpočtů na PC.

Prerekvizity

Základy teorie pravděpodobnosti a matematické statistiky.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny.

Způsob a kritéria hodnocení

Zkouška je formou předneseného referátu z vybrané oblasti statistických metod anebo vypracováním písemné práce zaměřené na řešení konkrétních úloh.

Učební cíle

Cílem předmětu je formování stochastického způsobu myšlení studentů a jejich seznámení s moderními stochastickými metodami a možnostmi využití profesionálního statistického softwaru ve výzkumu.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na přednášce není povinná, ale doporučuje se.

Použití předmětu ve studijních plánech

Program D-APM-P: Aplikovaná matematika, doktorský, doporučený kurs

Program D-APM-K: Aplikovaná matematika, doktorský, doporučený kurs

Typ (způsob) výuky

 

Přednáška

20 hod., nepovinná

Osnova

Stochastické procesy, klasifikace, realizace.
Momentové charakteristiky, stacionarita, ergodicita.
Markovovy řetězce a procesy.
Analýza časových řad (trend, periodicita, náhodnost, predikce).
Vícerozměrná rozdělení pravděpodobnosti, vícerozměrná pozorování.
Výběrová rozdělení, odhady a testy hypotéz.
Vícerozměrná lineární regresní analýza, model, diagnostika.
Nelineární regresní analýza, korelační analýza.
Analýza hlavních komponent, úvod do faktorové analýzy.
Diskriminační analýza, shluková analýza.
Statistický software – vlastnosti a možnosti použití.