Detail předmětu
Fuzzy modely technických procesů a systémů
FSI-9FMS Ak. rok: 2022/2023 Zimní semestr
Předmět je určen pro studenty doktorského studia a je zaměřen na základy teorie fuzzy množin (operace s fuzzy množinami, princip rozšíření, fuzzy čísla, fuzzy relace a grafy, fuzzy funkce, lingvistická proměnná, fuzzy logika, přibližné usuzování a rozhodování aj.) a také na použitelnost těchto metod při modelování technických veličin neurčitého charakteru.
Jazyk výuky
čeština
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Studenti získají potřebné znalosti z důležitých partií teorie fuzzy množin, které jim umožní vytvářet efektivní matematické modely neurčitých technických jevů a procesů a realizovat je pomocí adekvátních implementací na PC.
Prerekvizity
Základy teorie množin, algebry a matematické analýzy.
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny.
Způsob a kritéria hodnocení
Zkouška je formou předneseného referátu z vybrané oblasti fuzzy metod anebo vypracováním písemné práce zaměřené na řešení konkrétních úloh.
Učební cíle
Cílem předmětu je seznámení studentů se základními metodami, aplikacemi a možnostmi teorie fuzzy množin při modelování vágních veličin numerického i lingvistického charakteru, a následně pak systémů a procesů, které není možno popsat klasickými matematickými modely.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na přednášce není povinná, ale doporučuje se.
Použití předmětu ve studijních plánech
Program D-APM-K: Aplikovaná matematika, doktorský, doporučený kurs
Program D-APM-P: Aplikovaná matematika, doktorský, doporučený kurs
Typ (způsob) výuky
Přednáška
20 hod., nepovinná
Osnova
Fuzzy množiny (motivace, základní pojmy, vlastnosti).
Operace s fuzzy množinami (základní typy, vlastnosti).
Triangulární normy a konormy.
Princip rozšíření (kartézský součin, rozšíření zobrazeni).
Fuzzy čísla (rozšířené operace, vlastnosti, intervalová aritmetika).
Fuzzy relace a grafy (základní pojmy, druhy, vlastnosti).
Fuzzy funkce (základní typy, fuzzy parametr, derivace, integrál).
Lingvistická proměnná (model, vlastnosti, fuzzy prezentace, defuzzifikace).
Fuzzy logika (vícehodnotová logika, lingvistická logika).
Přibližné usuzování a rozhodování (fuzzy řízení).
Vybrané fuzzy modely: shluková analýza, lineární programování, spolehlivost aj.