Detail předmětu
Optimalizace II
FSI-SO2 Ak. rok: 2023/2024 Zimní semestr
Předmět je zaměřen na pokročilé optimalizační modely a metody pro řešení inženýrských úloh. Předmět zahrnuje zejména stochastické programování (deterministické reformulace, jejich vlastnosti a vybrané algoritmy) a vybrané okruhy z celočíselného síťového a dynamického programování. Kurs byl sestaven na základě zkušeností autora s obdobnými kursy na zahraničních školách.
Jazyk výuky
čeština
Počet kreditů
4
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Přednášená látka vyžaduje znalosti základů optimalizace v rozsahu předmětu SOP. Dále se předpokládají standardní znalosti pravděpodobnosti a matematické satistiky.
Pravidla hodnocení a ukončení předmětu
Zkouška je udělena na základě hodnocení předložené písemné práce a jejího přednesení v kolektivu zúčastněných studentů ke společné intenzivní diskusi.
Účast je kontrolována pomocí aktivní účasti studentů na řešených problémech, zameškaná výuka je nahrazována samostatným řešením zadaných úloh.
Učební cíle
Důraz je kladen na získání znalostí o pokročilých optimalizačních modelech. Důležité je porozumění a rozvíjení schopnosti osvojené poznatky používat.
Předmět je určen pro studenty matematického inženýrství, je užitečný pro studenty aplikovaných věd. Studenti prohloubí své znalosti teoretických základů pokročilé optimalizace a osvojí si pokročilé algoritmy řešení optimalizačních úloh a rozvinou svoji představu o uplatnění optimalizačních modelů v typických aplikacích.
Použití předmětu ve studijních plánech
Program N-MAI-P: Matematické inženýrství, magisterský navazující, povinný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
1. Původní úloha stochastického programování.
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním. Síťové úlohy.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie – konvexnost a měřitelnost.
9. WS případ – určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.
Cvičení s počítačovou podporou
13 hod., povinná
Vyučující / Lektor
Osnova
Příklady na:
1. Původní úlohu stochastického programování.
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním. Síťové úlohy.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie – konvexnost a měřitelnost.
9. WS případ – určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.
Účast na cvičení je povinná.