Detail předmětu
Funkce komplexní proměnné
FSI-SKF-A Ak. rok: 2024/2025 Letní semestr
Cilem kurzu je seznamit studenty se zaklady komplexni analyzy jedne promenne. Jeho obsah je nasledujici: komplexni cisla, elementarni funkce komplexni promenne, holomorfni funkce, derivace a krivkovy integral komplexni funkce, meromorfni funkce, Taylorova a Laurentova rada, reziduum a reziduova veta, aplikace reziduove vety na vypocet urcitych integralu. Konformni zobrazeni, homografie a dalsi priklady konformnich zobrazeni. Laplaceova transformace, zakladni vlastnosti, jednotkovy impuls a Diracova delta funkce, aplikace na reseni diferencialnich rovnic a systemu, Fourierova transformace.
Jazyk výuky
angličtina
Počet kreditů
6
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Analýza v reálném oboru na úrovni základního kurzu
Pravidla hodnocení a ukončení předmětu
Zápočet na základě testu
Zkouška písemná event. i ústní
Nahrazení zameškané výuky je možné absolvováním testu.
Učební cíle
Cilem predmetu je seznamit studenty se zakladnimi vlastnostmi komplexnich cisel a funkci komplexni promenne, s priklady aplikaci komplexni analyzy, a dale se zaklady operatoroveho poctu a jeho pouziti pri reseni fyzikalnich uloh.
Predmet Funkce komplexni promenne umoznuje studentum ziskat zakladni dovednosti v pouziti komplexnich cisel, vypoctu integralu pomoci rezidui, v pouziti konformnich zobrazeni a Laplaceovy a Fourierovy transformace.
Použití předmětu ve studijních plánech
Program N-MAI-A: Mathematical Engineering, magisterský navazující, povinný
Typ (způsob) výuky
Přednáška
39 hod., nepovinná
Osnova
1. Komlexní čísla, Gaussova rovina a Riemannova sféra
2. Funkce komplexní proměnné. Limita a spojitost. Elementární funkce komplexní proměnné.
3. Derivace funkce komplexní proměnné, holomorfní funkce, Cauchy-Riemannovy rovnice.
4. Harmonická funkce. Geometrický význam funkce komplexní proměnné a její derivace.
5. Posloupnosti a řady komplexních čísel. Mocninné řady. Stejnoměrná konvergence řad funkcí.
6. Integrál funkce komplexní proměnné.
7. Existence primitivní funkce na jednoduše souvislé oblasti.
8. Cauchyho věta, Cauchyho integrální vzorec
9. Věta o jednoznačnosti holomorfních funkcí
10. Izolované singulární body, Laurentova řada.
11. Rezidua .
12. Konformní zobrazení.
13. Fourierova transformace
Cvičení
26 hod., povinná
Osnova
1. Algebra komplexních čísel, převody mezi různými tvary, výpočet mocnin a odmocnin pomocí Moivreovy věty.2. Geometrie v Gaussově rovině, popis kružnice, přímky atd., řešení nerovnic v komplexních číslech. Vlastnosti elementárních funkcí.3. Výpočet komplexní derivace, ověřování Cauchy-Riemannových rovnic.4. Výpočet konjugované harmonické funkce, geometrický význam derivace funkce komplexní proměnné.5. Posloupnosti a řady komplexních čísel, mocninné řady, poloměr konvergence.6. Stejnoměrná konvergence řad funkcí, Weierstrassovo kriterium.7. Výpočet křivkového integrálu pomocí parametrizace a pomocí primitivní funkce.8. Výpočet indexu křivky. Integrování pomocí Cauchyho vzorců.9. Rozvoje holomorfních funkcí do mocninných řad. Rozvoje racionálních funkcí v různých bodech. Výpočet poloměru konvergence.10. Výpočty integrálů z meromorfních funkcí pomocí reziduové věty. Rozvoje do Laurentovy řady.11. Integrování reálných funkcí pomocí Reziduové věty.12. Konformní zobrazení. Zobrazování oblastí omezených přímkami a kružnicemi na sebe.13. Laplaceova transformace jednoduchých funkcí. Goniometrické a hypergeometrické funkce, Diracova delta funkce.