Detail předmětu

Optimalizace II

FSI-SO2-A Ak. rok: 2024/2025 Zimní semestr

Předmět je zaměřen na pokročilé optimalizační modely a metody pro řešení inženýrských úloh. Předmět zahrnuje zejména stochastické programování (deterministické reformulace, jejich vlastnosti a vybrané algoritmy) a vybrané okruhy z celočíselného a dynamického programování. Kurs byl sestaven na základě zkušeností autora s obdobnými kursy na zahraničních školách.

Jazyk výuky

angličtina

Počet kreditů

4

Garant předmětu

Zajišťuje ústav

Vstupní znalosti

Přednášená látka vyžaduje znalosti základů optimalizace v rozsahu předmětu SOP. Dále se předpokládají standardní znalosti pravděpodobnosti a matematické satistiky.

Pravidla hodnocení a ukončení předmětu

Zkouška je udělena na základě hodnocení předložené písemné práce a jejího přednesení v kolektivu zúčastněných studentů.


Účast je kontrolována pomocí aktivní účasti studentů na řešených problémech, zameškaná výuka je nahrazována samostatným řešením zadaných úloh.

Učební cíle

Důraz je kladen na získání znalostí o pokročilých optimalizačních modelech. Důležité je porozumění a rozvíjení schopnosti osvojené poznatky používat.


Předmět je určen pro studenty matematického inženýrství, je užitečný pro studenty aplikovaných věd. Studenti prohloubí své znalosti teoretických základů optimalizace a osvojí si pokročilé algoritmy řešení optimalizačních úloh a rozvinou svoji představu o uplatnění optimalizačních modelů v typických aplikacích.

Použití předmětu ve studijních plánech

Program N-MAI-A: Mathematical Engineering, magisterský navazující, povinný

Program N-AIM-A: Applied and Interdisciplinary Mathematics, magisterský navazující, povinně volitelný

Program C-AKR-P: Akreditované předměty v CŽV, celoživotní vzdělávání v akr. stud. programu
specializace CZS: Předměty zimního semestru, volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Původní úloha stochastického programování.
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie – konvexnost a měřitelnost.
9. WS případ – určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.

Cvičení s počítačovou podporou

13 hod., povinná

Vyučující / Lektor

Osnova

Příklady na:
1. Původní úlohu stochastického programování.
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním. Síťové úlohy.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie – konvexnost a měřitelnost.
9. WS případ – určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.

Účast na cvičení je povinná.